MATH 1553-B
 PRACTICE MIDTERM 3

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

In this problem, if the statement is always true, circle \mathbf{T}; if it is always false, circle \mathbf{F}; if it is sometimes true and sometimes false, circle M.
a) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ If A is a 3×3 matrix with characteristic polynomial $-\lambda^{3}+$ $\lambda^{2}+\lambda$, then A is invertible.
b) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A 3×3 matrix with two distinct eigenvalues is diagonalizable.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ If A is diagonalizable and B is similar to A, then B is diagonalizable.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A diagonalizable $n \times n$ matrix admits n linearly independent eigenvectors.
e) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A stochastic matrix admits a unique steady state.

Solution.

a) False: $\lambda=0$ is a root of the characteristic polynomial, so 0 is an eigenvalue, and A is not invertible.
b) Maybe: it is diagonalizable if and only if the eigenspace for the eigenvalue with multiplicity 2 has dimension 2.
c) True: if $A=P D P^{-1}$ with D diagonal, and $B=C A C^{-1}$, then

$$
B=C\left(P D P^{-1}\right) C^{-1}=(C P) D(C P)^{-1},
$$

so B is also similar to a diagonal matrix.
d) True: by the Diagonalization Theorem, an $n \times n$ matrix is diagonalizable if and only if it admits n linearly independent eigenvectors.
e) Maybe: a positive stochastic matrix admits a unique steady state by the PerronFrobenius theorem, but if the matrix has zero entries, then it may admit more than one steady state.

Problem 2.

Give an example of a 2×2 real-valued matrix A with each of the following properties. You need not explain your answer.
a) A has no real eigenvalues.
b) A has eigenvalues 1 and 2 .
c) A is invertible but not diagonalizable.
d) A is diagonalizable but not invertible.
e) A is positive stochastic.

Solution.

a) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
b) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.
c) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
d) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
e) $A=\left(\begin{array}{ll}\frac{1}{3} & \frac{1}{4} \\ \frac{2}{3} & \frac{3}{4}\end{array}\right)$.

Problem 3.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & -4 \\
0 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

a) [4 points] Find the eigenvalues of A, and compute their algebraic multiplicities.
b) [4 points] For each eigenvalue of A, find a basis for the corresponding eigenspace.
c) [2 points] Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If not, why not?

Solution.

a) We compute the characteristic polynomial by expanding along the second row:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & 2 & -4 \\
0 & 2-\lambda & 0 \\
2 & 2 & -2-\lambda
\end{array}\right)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
4-\lambda & -4 \\
2 & -2-\lambda
\end{array}\right) \\
& =(2-\lambda)\left(\lambda^{2}-2 \lambda\right)=-\lambda(\lambda-2)^{2}
\end{aligned}
$$

The roots are 0 (with multiplicity 1) and 2 (with multiplicity 2).
b) First we compute the 0 -eigenspace by solving $(A-0 I) x=0$:

$$
A=\left(\begin{array}{ccc}
4 & 2 & -4 \\
0 & 2 & 0 \\
2 & 2 & -2
\end{array}\right) \underset{\text { rref }}{\text { mun }}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The parametric vector form of the general solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=z\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, so a basis for the 0 -eigenspace is $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$.

Next we compute the 2-eigenspace by solving $(A-2 I) x=0$:

$$
A-2 I=\left(\begin{array}{ccc}
2 & 2 & -4 \\
0 & 0 & 0 \\
2 & 2 & -4
\end{array}\right) \stackrel{\text { rref }}{\text { mm }}\left(\begin{array}{ccc}
1 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The parametric vector form for the general solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=y\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$, so a basis for the 2-eigenspace is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)\right\}$.
c) We have produced three linearly independent eigenvectors, so the matrix is diagonalizable:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)^{-1} .
$$

Problem 4.

Consider the matrix

$$
A=\left(\begin{array}{ll}
3 & -5 \\
2 & -3
\end{array}\right) .
$$

a) [3 points] Find the (complex) eigenvalues of A.
b) [2 points] For each eigenvalue of A, find a corresponding eigenvector.
c) [3 points] Find a rotation-scaling matrix C that is similar to A.
d) [1 point] By what factor does C scale?
e) [1 point] By what angle does C rotate?

Solution.

a) The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & -5 \\
2 & -3-\lambda
\end{array}\right)=\lambda^{2}+1 .
$$

Its roots are the eigenvalues $\lambda= \pm i$.
b) First we find an eigenvector corresponding to the eigenvalue i by solving the equation $(A-i I) x=0$.

$$
A-i I=\left(\begin{array}{cc}
3-i & -5 \\
2 & -3-i
\end{array}\right) .
$$

We know that this matrix is not invertible, since i is an eigenvalue; hence the second row must be a multiple of the first, so a row echelon form for A is $\left(\begin{array}{cc}3-i & -5 \\ 0 & 0\end{array}\right)$. The parametric form of the solution is $(3-i) x=5 y$, so an eigenvector is $\binom{5}{3-i}$.

The second eigenvalue $-i$ is the complex conjugate of the first, so it admits the complex conjugate $\binom{5}{3+i}$ as an eigenvector.
c) If $\lambda=a+b i$ is an eigenvector, then A is similar to the rotation-scaling matrix $C=$ $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$. Choosing $\lambda=-i$ means $a=0$ and $b=-1$, so $C=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
d) The scaling factor is $|\lambda|=|-i|=1$.
e) The argument of $\lambda=-i$ is $-\pi / 2$, so the matrix C rotates by $+\pi / 2$.

Problem 5.

Consider the sequence of numbers $0,1,5,31,185, \ldots$ given by the recursive formula

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 \\
& a_{n}=5 a_{n-1}+6 a_{n-2} \quad(n \geq 2) .
\end{aligned}
$$

a) $[2$ points] Find a matrix A such that

$$
A\binom{a_{n-2}}{a_{n-1}}=\binom{a_{n-1}}{a_{n}}
$$

for all $n \geq 2$.
b) [3 points] Find an invertible matrix P and a diagonal matrix D such that $A=$ $P D P^{-1}$.
c) [3 points] Give a formula for A^{n}. Your answer should be a single matrix whose entries depend only on n.
d) [2 points] Give a non-recursive formula for a_{n}.
(For extra practice: what happens if you try to use this method to get a closed form for the nth Fibonacci number?)

Solution.

a) We want a matrix A such that

$$
A\binom{a_{n-2}}{a_{n-1}}=\binom{a_{n-1}}{a_{n}}=\binom{a_{n-1}}{5 a_{n-1}+6 a_{n-2}}=a_{n-2}\binom{0}{6}+a_{n-1}\binom{1}{5} .
$$

The only such matrix is $A=\left(\begin{array}{ll}0 & 1 \\ 6 & 5\end{array}\right)$.
b) The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
6 & 5-\lambda
\end{array}\right)=\lambda^{2}-5 \lambda-6=(\lambda+1)(\lambda-6) .
$$

The eigenvalues are -1 and 6 ; we compute the eigenvectors:

$$
A+I=\left(\begin{array}{ll}
1 & 1 \\
6 & 6
\end{array}\right) \stackrel{\text { rref }}{\underset{\sim m}{ }}\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) .
$$

An eigenvector with eigenvalue -1 is $v=\binom{-1}{1}$.

$$
A-6 I=\left(\begin{array}{cc}
-6 & 1 \\
6 & -1
\end{array}\right) \stackrel{\text { ref }}{\text { min }}\left(\begin{array}{cc}
-6 & 1 \\
0 & 0
\end{array}\right) .
$$

An eigenvector with eigenvalue 6 is $w=\binom{1}{6}$. Therefore $A=P D P^{-1}$ with

$$
P=\left(\begin{array}{cc}
-1 & 1 \\
1 & 6
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
-1 & 0 \\
0 & 6
\end{array}\right)
$$

c) $A^{n}=\left(\begin{array}{cc}-1 & 1 \\ 1 & 6\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 6\end{array}\right)^{n}\left(\begin{array}{cc}-1 & 1 \\ 1 & 6\end{array}\right)^{-1}$
$=\left(\begin{array}{cc}-1 & 1 \\ 1 & 6\end{array}\right)\left(\begin{array}{cc}(-1)^{n} & 0 \\ 0 & 6^{n}\end{array}\right) \frac{1}{-7}\left(\begin{array}{cc}6 & -1 \\ -1 & -1\end{array}\right)$
$=-\frac{1}{7}\left(\begin{array}{cc}-1 & 1 \\ 1 & 6\end{array}\right)\left(\begin{array}{cc}(-1)^{n} 6 & (-1)^{n+1} \\ -6^{n} & -6^{n}\end{array}\right)$
$=-\frac{1}{7}\left(\begin{array}{lc}(-1)^{n+1} 6-6^{n} & (-1)^{n}-6^{n} \\ (-1)^{n} 6-6^{n+1} & (-1)^{n+1}-6^{n+1}\end{array}\right)$
d) We have

$$
\binom{a_{n}}{a_{n+1}}=A\binom{a_{n-1}}{a_{n}}=A^{2}\binom{a_{n-2}}{a_{n-1}}=\cdots=A^{n}\binom{a_{0}}{a_{1}}=A^{n}\binom{0}{1}=-\frac{1}{7}\binom{(-1)^{n}-6^{n}}{(-1)^{n+1}-6^{n+1}} .
$$

Hence $a_{n}=-\frac{1}{7}\left((-1)^{n}-6^{n}\right)$.
[Scratch work]

