MATH 1553-B
MIDTERM EXAMINATION 2

| Name |
| :--- | :--- |

1	2	3	4	5	6	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 60 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Problem 1.

Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) $\mathbf{T} \quad \mathbf{F}$ An invertible matrix is a product of elementary matrices.
b) $\mathbf{T} \quad \mathbf{F} \quad$ There exists a 3×5 matrix (3 rows, 5 columns) with rank 4 .
c) $\mathbf{T} \quad \mathbf{F} \quad$ There exists a 3×5 matrix whose null space has dimension 4 .
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If the columns of an $n \times n$ matrix A span \mathbf{R}^{n}, then A is invertible.
e) $\mathbf{T} \quad \mathbf{F}$ The solution set of a consistent matrix equation $A x=b$ is a subspace.

Problem 2.

[5 points each]

Let

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

a) Find A^{-1}.
b) Solve for x in $A x=\binom{a}{b}$.

Problem 3.

Let

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) $[3$ points] Compute $\operatorname{det}(A)$.
b) $[3$ points $]$ Compute $\operatorname{det}(B)$.
c) $[2$ points $]$ Compute $\operatorname{det}(A B)$.
d) [2 points] Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.

Problem 4.

Consider the following matrix A and its reduced row echelon form:

$$
\left(\begin{array}{cccc}
2 & 4 & 7 & -16 \\
3 & 6 & -1 & -1
\end{array}\right) \text { minu }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right) .
$$

a) [4 points] Find a basis \mathcal{B} for $\operatorname{Nul} A$.
b) [2 points each] For each of the following vectors v, decide if v is in $\operatorname{Nul} A$, and if so, find $[x]_{\mathcal{B}}$:

$$
\left(\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right) \quad\left(\begin{array}{c}
-1 \\
1 \\
2 \\
1
\end{array}\right)
$$

Problem 5.

Consider the matrix A and its reduced row echelon form from the previous problem:

$$
\left(\begin{array}{cccc}
2 & 4 & 7 & -16 \\
3 & 6 & -1 & -1
\end{array}\right) \text { mum }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right) .
$$

a) $[4$ points $]$ Find a basis for $\operatorname{Col} A$.
b) [3 points] What are $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$?
c) [3 points] Find a different basis for $\operatorname{Col} A$. (Reordering your answer from (a) does not count.) Justify your answer.

Problem 6.

Which of the following are subspaces of \mathbf{R}^{4} and why?
a) $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{c}-2 \\ 7 \\ 9 \\ 13\end{array}\right),\left(\begin{array}{c}144 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$
b) $\mathrm{Nul}\left(\begin{array}{rrr}2 & -1 & 3 \\ 0 & 0 & 4 \\ 6 & -4 & 2 \\ -9 & 3 & 4\end{array}\right)$
c) $\operatorname{Col}\left(\begin{array}{rrr}2 & -1 & 3 \\ 0 & 0 & 4 \\ 6 & -4 & 2 \\ -9 & 3 & 4\end{array}\right)$
d) $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x y=z w\right\}$
e) The range of a linear transformation with codomain \mathbf{R}^{4}.
[Scratch work]

