MATH 1553-B
 MIDTERM EXAMINATION 2

Name	

1	2	3	4	5	6	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 60 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) $\mathbf{T} \quad \mathbf{F} \quad$ An invertible matrix is a product of elementary matrices.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ There exists a 3×5 matrix (3 rows, 5 columns) with rank 4 .
c) $\mathbf{T} \quad \mathbf{F} \quad$ There exists a 3×5 matrix whose null space has dimension 4 .
d) $\quad \mathbf{T} \quad \mathbf{F}$ the columns of an $n \times n$ matrix A span \mathbf{R}^{n}, then A is invertible.
e) $\mathbf{T} \quad \mathbf{F}$ The solution set of a consistent matrix equation $A x=b$ is a subspace.

Solution.

a) True: if A is invertible, then it is row equivalent to the identity matrix I. This means there is a sequence of elementary matrices $E_{1}, E_{2}, \ldots, E_{r}$ such that

$$
E_{r} E_{r-1} \cdots E_{2} E_{1} A=I \quad \text { and hence } \quad A=E_{1}^{-1} E_{2}^{-1} \cdots E_{r-1}^{-1} E_{r}^{-1} .
$$

b) False: the rank is the dimension of the column space, which is a subspace of \mathbf{R}^{3}, hence has dimension at most 3 .
c) True: for instance, the null space of the matrix

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

has dimension 4.
d) True: this is one of the conditions of the Invertible Matrix Theorem.
e) False: this is true if and only if $b=0$, i.e., the equation is homogeneous, in which case the solution set is the null space of A.

Problem 2.

Let

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

a) Find A^{-1}.
b) Solve for x in $A x=\binom{a}{b}$.

Solution.

a) We have $\operatorname{det}(A)=-2$. Using the general formula for the inverse of a 2×2 matrix, we have:

$$
A^{-1}=-\frac{1}{2}\left(\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right) .
$$

b) $x=A^{-1}\binom{a}{b}=-\frac{1}{2}\left(\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right)\binom{a}{b}=-\frac{1}{2}\binom{4 a-3 b}{-2 a+b}$.

Problem 3.

Let

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) $[3$ points] Compute $\operatorname{det}(A)$.
b) $[3$ points $]$ Compute $\operatorname{det}(B)$.
c) $[2$ points $]$ Compute $\operatorname{det}(A B)$.
d) [2 points] Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.

Solution.

a) The second column has three zeros, so we expand by cofactors:

$$
\operatorname{det}\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)=-\operatorname{det}\left(\begin{array}{rrr}
-1 & 0 & 6 \\
9 & 2 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

Now we expand the second column by cofactors again:

$$
\cdots=-2 \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & -1
\end{array}\right)=(-2)(-1)(-1)=-2 .
$$

b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements, we reduce to the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & -3 & 0 \\
0 & 1 & 5 & 4 \\
0 & 0 & 7 & 8 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

The determinant of this matrix is -21 , so the determinant of the original matrix is 21.
c) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=(-2)(21)=-42$.
d) $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)=\operatorname{det}(A)^{2} \operatorname{det}(B)^{-1} \operatorname{det}(A) \operatorname{det}(B)^{2}=\operatorname{det}(A)^{3} \operatorname{det}(B)=(-2)^{3}(21)=$ -168 .

Problem 4.

Consider the following matrix A and its reduced row echelon form:

$$
\left(\begin{array}{cccc}
2 & 4 & 7 & -16 \\
3 & 6 & -1 & -1
\end{array}\right) \text { mimu }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right) .
$$

a) [4 points] Find a basis \mathcal{B} for $\operatorname{Nul} A$.
b) [2 points each] For each of the following vectors v, decide if v is in $\operatorname{Nul} A$, and if so, find $[x]_{\mathcal{B}}$:

$$
\left(\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right) \quad\left(\begin{array}{c}
-1 \\
1 \\
2 \\
1
\end{array}\right)
$$

Solution.

a) We compute the parametric vector form for the general solution of $A x=0$:

$$
\left\{ \text { mann }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) .\right.
$$

Therefore, a basis is given by

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right)\right\}
$$

b) First we note that if

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=c_{1}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right),
$$

then $c_{1}=b$ and $c_{2}=d$. This makes it easy to check whether a vector is in $\operatorname{Nul} A$, and to compute the \mathcal{B}-coordinates.

$$
\begin{gathered}
\left(\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right) \neq 3\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+2\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \Longrightarrow \text { not in NulA. } \\
\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right)=2\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \Longrightarrow\left[\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right)\right]_{\mathcal{B}}=\binom{2}{-1} .
\end{gathered}
$$

$$
\left(\begin{array}{c}
-1 \\
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \Longrightarrow\left[\left(\begin{array}{c}
-1 \\
1 \\
2 \\
1
\end{array}\right)\right]_{\mathcal{B}}=\binom{1}{1}
$$

Problem 5.

Consider the matrix A and its reduced row echelon form from the previous problem:

$$
\left(\begin{array}{cccc}
2 & 4 & 7 & -16 \\
3 & 6 & -1 & -1
\end{array}\right) \text { mun }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right) .
$$

a) [4 points] Find a basis for $\operatorname{Col} A$.
b) [3 points] What are $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$?
c) [3 points] Find a different basis for $\operatorname{Col} A$. (Reordering your answer from (a) does not count.) Justify your answer.

Solution.

a) A basis for the column space is given by the pivot columns of A :

$$
\left\{\binom{2}{3},\binom{7}{-1}\right\} .
$$

b) The rank is the dimension of the column space, which is 2 . The rank plus the dimension of the null space equals the number of columns, so the null space has dimension 2 as well (as we know from the previous problem).
c) The column space is a 2-dimensional subspace of \mathbf{R}^{2}. Thus $\operatorname{Col} A=\mathbf{R}^{2}$, so any basis for \mathbf{R}^{2} works. For example, we can use the standard basis:

$$
\left\{\binom{1}{0},\binom{0}{1}\right\} .
$$

Problem 6.

Which of the following are subspaces of \mathbf{R}^{4} and why?
a) $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{c}-2 \\ 7 \\ 9 \\ 13\end{array}\right),\left(\begin{array}{c}144 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$
b) $\mathrm{Nul}\left(\begin{array}{rrr}2 & -1 & 3 \\ 0 & 0 & 4 \\ 6 & -4 & 2 \\ -9 & 3 & 4\end{array}\right)$
c) $\operatorname{Col}\left(\begin{array}{rrr}2 & -1 & 3 \\ 0 & 0 & 4 \\ 6 & -4 & 2 \\ -9 & 3 & 4\end{array}\right)$
d) $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x y=z w\right\}$
e) The range of a linear transformation with codomain \mathbf{R}^{4}.

Solution.

a) This is a subspace of \mathbf{R}^{4} : it is a span of three vectors in \mathbf{R}^{4}, and any span is a subspace.
b) This is not a subspace of \mathbf{R}^{4}; it is a subspace of \mathbf{R}^{3}.
c) This is a subspace of \mathbf{R}^{4} : it is the span of three vectors in \mathbf{R}^{4}.
d) This is not a subspace of \mathbf{R}^{4} : it is not closed under addition. For instance,

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \text { are in } V \text {, but }\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right) \text { is not. }
$$

e) This is a subspace of \mathbf{R}^{4} : it is the column space of the associated $4 \times$? matrix, and any column space is a subspace.
[Scratch work]

