MATH 1553-B
 PRACTICE MIDTERM 2

\square

1	2	3	4	5	6	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 60 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Problem 1.

Suppose that A is an $n \times n$ matrix that is not invertible. Let $T(x)=A x$ be the linear transformation associated to A. Which of the following can you conclude? Circle all that apply.
a) A has two identical columns
b) $\operatorname{det}(A)=0$
c) A has a row of zeros
d) There are two different vectors u and v in \mathbf{R}^{n} with $T(u)=T(v)$

One more true-false problem:
e) $\mathbf{T} \quad \mathbf{F} \quad$ If A is a 2×5 matrix, then the solution set of $A x=0$ is a subspace of \mathbf{R}^{5}.

Problem 2.

Let

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
5 & 6 & 7 & 8 \\
6 & 8 & 10 & 12 \\
-9 & -10 & -11 & -12
\end{array}\right) .
$$

a) [1 point] What three row operations are needed to transform A into B ?

Operation 1:

Operation 2:

Operation 3:

b) [3 points] What are the elementary matrices for these three operations (in the same order)?

$$
E_{1}=\quad E_{2}=\quad E_{3}=
$$

c) [3 points] Write an equation for B in terms of A and E_{1}, E_{2}, E_{3}.
$B=$
d) [3 points] Write an equation for A in terms of B and E_{1}, E_{2}, E_{3}.

$$
A=
$$

Problem 3.

Let

$$
A=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right)
$$

Be sure to show your work in this problem.
a) [5 points] Find the inverse of A, or explain why A is not invertible.
b) [3 points] Find the determinant of A.
c) [2 points] Find the volume of the parallelepiped defined by the columns of A.

Problem 4.

Consider the following matrix and its reduced row echelon form:

$$
A=\left(\begin{array}{rrrr}
3 & 4 & 0 & 7 \\
1 & -5 & 2 & -2 \\
-1 & 4 & 0 & 3 \\
1 & -1 & 2 & 2
\end{array}\right) \text { mans }\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

a) $[3$ points] Find a basis for $\operatorname{Col} A$.
b) [3 points] Find a basis for $\operatorname{Nul} A$.
c) [2 points] What are $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$?
d) [2 points] If B is any $m \times n$ matrix, then

$$
\operatorname{rank} B+\operatorname{dimNul} B=
$$

Problem 5.

Consider the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right)
$$

and the subspace

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \text { in } \mathbf{R}^{4} \mid w=0\right\} .
$$

a) [4 points] Explain why $\mathcal{B}_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a basis for V.
b) [4 points] Explain why $\mathcal{B}_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V.
c) $[2$ points $]$ Find $[v]_{\mathcal{B}_{2}}$ if $v=\left(\begin{array}{l}4 \\ 4 \\ 4 \\ 0\end{array}\right)$.

Problem 6.

Compute the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right)^{2}
$$

[Scratch work]

