MATH 1553-B
 PRACTICE MIDTERM 2

\square

1	2	3	4	5	6	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 60 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Suppose that A is an $n \times n$ matrix that is not invertible. Let $T(x)=A x$ be the linear transformation associated to A. Which of the following can you conclude? Circle all that apply.
a) A has two identical columns
b) $\operatorname{det}(A)=0$
c) A has a row of zeros
d) There are two different vectors u and v in \mathbf{R}^{n} with $T(u)=T(v)$

One more true-false problem:
e) $\quad \mathbf{F} \quad$ If A is a 2×5 matrix, then the solution set of $A x=0$ is a subspace of \mathbf{R}^{5}.

Solution.

a) This is not necessarily true. For instance, take $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
b) This is true: the determinant detects invertibility.
c) This is not necessarily true; see (a).
d) This is true: by the invertible matrix theorem, T is not one-to-one.
e) True: A has 5 columns, so any solution x has 5 entries.

Problem 2.

Let

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
5 & 6 & 7 & 8 \\
6 & 8 & 10 & 12 \\
-9 & -10 & -11 & -12
\end{array}\right) .
$$

a) [1 point] What three row operations are needed to transform A into B ?

Operation 1: Swap rows 1 and 2.
Operation 2: Add row 1 to row 2.
Operation 3: Multiply row 3 by -1 .
b) [3 points] What are the elementary matrices for these three operations (in the same order)?

$$
E_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

c) [3 points] Write an equation for B in terms of A and E_{1}, E_{2}, E_{3}.

$$
B=E_{3} E_{2} E_{1} A
$$

d) [3 points] Write an equation for A in terms of B and E_{1}, E_{2}, E_{3}.

$$
A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} B
$$

Note that the row operations can be done in almost any order; this is an example solution.

Problem 3.

Let

$$
A=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & -1
\end{array}\right)
$$

Be sure to show your work in this problem.
a) [5 points] Find the inverse of A, or explain why A is not invertible.
b) [3 points] Find the determinant of A.
c) [2 points] Find the volume of the parallelepiped defined by the columns of A.

Solution.

a) To find the inverse, we row reduce the matrix augmented with the identity:

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\text { man }}\left(\begin{array}{rrr|rrr}
-1 & 0 & -1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0
\end{array}\right) \\
& \underset{\text { mans }}{ }\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 0
\end{array}\right) \\
& \underset{\text { mans }}{ }\left(\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence $A^{-1}=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right)$.
b) After the first row swap above, the matrix becomes upper-triangular:

$$
\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Hence the determinant of A is $-(-1) \cdot 1 \cdot(-1)=-1$.
c) The volume of the parallelepiped is the absolute value of the determinant, which in this case is 1 .

Problem 4.

Consider the following matrix and its reduced row echelon form:

$$
A=\left(\begin{array}{rrrr}
3 & 4 & 0 & 7 \\
1 & -5 & 2 & -2 \\
-1 & 4 & 0 & 3 \\
1 & -1 & 2 & 2
\end{array}\right) \text { мmmu }\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

a) $[3$ points $]$ Find a basis for $\operatorname{Col} A$.
b) [3 points] Find a basis for $\operatorname{Nul} A$.
c) [2 points] What are $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$?
d) [2 points] If B is any $m \times n$ matrix, then

$$
\operatorname{rank} B+\operatorname{dimNul} B=
$$

Solution.

a) A basis for $\operatorname{Col} A$ consists of the pivot colums of A :

$$
\left\{\left(\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{r}
4 \\
-5 \\
4 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right)\right\}
$$

b) First we find the parametric vector form of the general solution of $A x=0$:

$$
\left\{\begin{array}{l}
x_{1}=-x_{4} \\
x_{2}=-x_{4} \\
x_{3}=-x_{4} \\
x_{4}=x_{4}
\end{array} \Longrightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{4}\left(\begin{array}{r}
-1 \\
-1 \\
-1 \\
1
\end{array}\right) .\right.
$$

Hence a basis for $\operatorname{Nul} A$ is

$$
\left\{\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right)\right\} .
$$

c) The rank of A is the dimension of $\operatorname{Col} A$, which is the number of vectors in a basis for $\operatorname{Col} A$, which is 3 . The dimension of $\operatorname{Nul} A$ is the number of vectors in a basis for $\operatorname{Nul} A$, which is 1 .
d) The Rank Theorem says that the rank plus the dimension of the null space is the number of columns, namely n.

Problem 5.

Consider the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right)
$$

and the subspace

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \text { in } \mathbf{R}^{4} \mid w=0\right\} .
$$

a) [4 points] Explain why $\mathcal{B}_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a basis for V.
b) [4 points] Explain why $\mathcal{B}_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V.
c) $[2$ points $]$ Find $[v]_{\mathcal{B}_{2}}$ if $v=\left(\begin{array}{l}4 \\ 4 \\ 4 \\ 0\end{array}\right)$.

Solution.

a) The unit coordinate vectors are always linearly independent. They span V because

$$
\left(\begin{array}{l}
x \\
y \\
z \\
0
\end{array}\right)=x e_{1}+y e_{2}+z e_{3} .
$$

Therefore they are a basis.
b) We must check that \mathcal{B}_{2} is linearly independent, and that it spans V. For this, we row reduce the matrix whose columns are v_{1}, v_{2}, v_{3} :

$$
\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & 2 & -1 \\
3 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \text { mans }\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & -4 & -3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right) .
$$

Since each column has a pivot, the vectors are linearly independent. We know from (a) that $\operatorname{dim} V=3$, so by the Basis Theorem, \mathcal{B}_{2} spans V.
c) One can solve this by row reduction, but you can eyeball this to see that $v=v_{1}+v_{2}$, and thus

$$
[v]_{\mathcal{B}_{2}}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Problem 6.

Compute the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right)^{2}
$$

Solution.

The determinant of the square is the square of the determinant, so we start by computing

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right)
$$

This is a big, complicated matrix, so it's easiest to use row reduction.

$$
\begin{array}{rlrl}
\operatorname{det}\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 1 & 2 & 5 \\
0 & -1 & -1 & -10
\end{array}\right) & & \\
& =\operatorname{det}\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 0 & 10 \\
0 & 0 & 1 & -5
\end{array}\right) & \text { (row replacements) } \\
& =-\operatorname{det}\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 10
\end{array}\right) & & \\
& =-1 \cdot 1 \cdot 1 \cdot 10 & \text { (row replacements) } \\
& =-10 . & & \\
& \text { (triangular matrix) }
\end{array}
$$

Thus

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right)^{2}=100
$$

[Scratch work]

