MATH 1553-B MIDTERM EXAMINATION 1

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

In this problem, A is an $m \times n$ matrix (m rows and n columns) and b is a vector in \mathbf{R}^{m}. Let $T(x)=A x$ be the linear transformation associated to A. Circle \mathbf{T} if the statement is always true (for any choices of A and b) and circle \mathbf{F} otherwise. Do not assume anything else about A or b except what is stated.
a) $\quad \mathbf{T} \quad$ If $m \leq n$, then T is onto.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A has fewer than n pivots, then $A x=b$ has infinitely many solutions.
c) $\mathbf{T} \quad \mathbf{F} \quad$ The columns of $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ are linearly independent.
d) $\quad \mathbf{T} \quad$ If b is in the span of the columns of A, then $A x=b$ is consistent.
e) $\mathbf{T} \quad \mathbf{F}$ The solution set of $A x=b$ is a span.

Acme Widgets, Gizmos, and Doodads has two factories. Factory A makes 10 widgets, 3 gizmos, and 2 doodads every hour, and factory B makes 4 widgets, 1 gizmo, and 1 doodad every hour.
a) If factory A runs for a hours and factory B runs for b hours, how many widgets, gizmos, and doodads are produced? Express your answer as a vector equation.
b) A customer places an order for 16 widgets, 5 gizmos, and 3 doodads. Can Acme fill the order with no widgets, gizmos, or doodads left over? If so, how many hours do the factories run? If not, why not?

Problem 3.

[10 points]

Find all values of h such that $\left(\begin{array}{l}1 \\ h \\ 5\end{array}\right)$ is not in the span of $\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)$.

Problem 4.

Consider the following consistent system of linear equations.

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=-2 \\
3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4}=-2 \\
5 x_{1}+6 x_{2}+7 x_{3}+8 x_{4}=-2
\end{array}
$$

a) [4 points] Find the parametric vector form for the general solution.
b) [3 points] Find the parametric vector form of the corresponding homogeneous equations.
c) [3 points] Find a linear dependence relation among the vectors

$$
\left\{\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right),\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right),\left(\begin{array}{l}
3 \\
5 \\
7
\end{array}\right),\left(\begin{array}{l}
4 \\
6 \\
8
\end{array}\right)\right\} .
$$

Problem 5.

Consider the following transformations from \mathbf{R}^{3} to \mathbf{R}^{2} :

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{2 x+3 y+z}{4 x+6 y+2 z} \quad U\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{2 x+3 y+z}{4 x+6 y+2 z+2} .
$$

a) [3 points] One of these two transformations is not linear. Which is it, and why?
b) [3 points] Find the standard matrix for the linear one.
c) [2 points] Draw a picture of the range of the linear one.
d) [2 points] Is the linear one onto? If so, why? If not, find a vector b in \mathbf{R}^{2} which is not in the range. (It is enough to use the picture in (c).)
[Scratch work]

