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1 Vectors in Rn

You may be thinking that “Vectors in Rn” sounds exotic. It is exotic. It is both interest-
ing and eye-opening. But it is not distant or unreachable. Some students in this course
may already have been exposed to vectors in Rn in previous courses. But it might be
that not all students are familiar with all the notation and definitions we will need at
the start of our linear algebra course that deal with n-dimensional vectors. And so, the
first chapter of these notes introduces the notion of a vector in Rn.

1.1 Vectors

A vector is an ordered list of numbers. For example, 1

0

5


is a vector with three elements. The elements can represent real-world data, such as
exam scores, RGB colours from a photograph, and so on.

1.2 The Length and Direction of a Vector

The length and direction of a vector are concepts we use throughout our linear algebra
course. To describe these concepts, we begin by defining a one-dimensional space to
be R. We can represent this space with a single axis.
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Now choose a point on the axis to label 0, and another point to label 1.

To find the point matching +2.1 on this axis, we start at 0 and head in the direction of
1, and go 2.17 times as far. The basic idea here is that we are introducing the concepts of
length and direction. These concepts are helpful throughout our linear algebra course,
particularly at the end of the semester, when we explore orthogonality.

We can draw a vector as having some length and pointing in some direction.

There is a subtlety in the definition of a vector as consisting of a length and a direc-
tion. The two vectors below are equal, even though they start in different places.

The two vectors are equal because they have equal lengths and equal directions.
Again: those vectors are not just alike, they are equal.

How can things that are in different places be equal? Think of a vector as representing
a displacement (the word vector is Latin for carrier or traveler). These two squares
undergo displacements that are equal even though they start in different places.

1.3 The Relationship Between Points and Vectors

There is a relationship between points and vectors that we will use many times in
our linear algebra course. The vector that extends from the point (a1, a2) to the point
(b1, b2) can be denoted as as (

b1 − a1

b2 − a2

)
For example, the “two over and one up” arrow,
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would be the vector (
2

1

)
We often draw the arrow as starting at the origin, and we then say it is in the canon-

ical position (or natural position or standard position). When

~v =

(
v1

v2

)

is in canonical position, then it extends from the origin to the endpoint (v1, v2).

1.4 Vectors in Rn

We can extend or concept of a vector to R3, or to even higher-dimensional spaces, with
the obvious generalization: the vector that, if it starts at the point (a1, ..., an), ends at
the point (b1, ..., bn), is represented by the column vector

b1 − a1

b2 − a2
...

bn − an


The above vector has n elements, and is therefore a vector in Rn,

Rn =




v1

v2
...
vn

 | v1, . . . , vn ∈ R


Note also that, as before, two vectors are equal if they have the same representation.

Also note that the symbol ∈ simply means “in”, or “element of”.
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1.5 Vector Algebra

For scalar c ∈ R, and vectors ~v and ~w,

~v =

(
v1

v2

)
, ~w =

(
w1

w2

)
we define scalar multiplication and vector addition as follows,

c

(
v1

v2

)
=

(
c v1

c v2

)
, ~v+ ~w =

(
v1

v2

)
+

(
w1

w2

)
=

(
v1 +w1

v2 +w2

)
We can understand these operations geometrically. For instance, if ~v represents a dis-
placement, then 3~v represents a displacement in the same direction but three times as
far. And (−1)~v represents a displacement of the same distance as ~v, but in the opposite
direction.

And if ~v and ~w represent displacements, then ~v + ~w represents those displacements
combined.

The long arrow is the combined displacement in this sense: imagine that you are
walking on a ship’s deck. Suppose that in one minute the ship’s motion gives it a
displacement relative to the sea of ~v, and in the same minute your walking gives you a
displacement relative to the ship’s deck of ~w. Then ~v+ ~w is your displacement relative
to the sea.

Another way to understand the vector sum is with the parallelogram rule. Draw the
parallelogram formed by the vectors ~v and ~w. Then the sum ~v + ~w extends along the
diagonal to the far corner.
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2 Lengths, Angles, and the Dot Product

2.1 Vector Lengths and Unit Vectors

The length of a vector ~v ∈ Rn is defined as the square root of the sum of the squares of
its components.

|~v| =
√
v21 + · · ·+ v2n

This is a natural generalization of the Pythagorean Theorem. For any nonzero ~v, the
vector ~v/|~v| has length one. We say that dividing ~v by |~v| normalizes the vector ~v to
length one. Vectors with length one are referred to as unit vectors.

2.2 Angles Between Vectors in R3

We can use the idea of lengths to obtain a formula for the angle between two vec-
tors. Consider two vectors in R3 where neither is a multiple of the other (the special
case of multiples will turn out below not to be an exception). They determine a two-
dimensional plane - for instance, put them in canonical position and take the plane
formed by the origin and the endpoints. In that plane consider the triangle with sides
~u, ~v, and ~u− ~v. Apply the Law of Cosines:

|~u− ~v |2 = |~u |2 + |~v |2 − 2 |~u | |~v | cos θ

where θ is the angle between the vectors. The left side gives

(u1 − v1)
2 + (u2 − v2)

2 + (u3 − v3)
2

= (u21 − 2u1v1 + v
2
1) + (u22 − 2u2v2 + v

2
2) + (u23 − 2u3v3 + v

2
3)

while the right side gives us

(u21 + u
2
2 + u

2
3) + (v21 + v

2
2 + v

2
3) − 2 |~u | |~v | cos θ
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Canceling squares u21, . . . , v23 and dividing by 2 gives a formula for the cosine of the
angle,

cos θ =
u1v1 + u2v2 + u3v3

|~u| |~v |
(1)

If we need the angle between the two vectors, we can use

θ = cos−1
(
u1v1 + u2v2 + u3v3

|~u| |~v |

)
(2)

2.3 Dot Products

To extend the concept of an angle between vectors in Rn, we cannot draw pictures
as above. But we can instead make the argument analytically. First, the form of the
numerator of Equation (2) comes from the middle terms of (ui − vi)2. This motivates
our definition of the dot product.

The dot product (or inner product) of real-valued vectors in Rn is

~u · ~v = u1v1 + u2v2 + . . .+ unvn

Note that the dot product of two vectors is a real number, not a vector, and that the dot
product is only defined if the two vectors have the same number of components. Note
also that dot product is related to length:

~u · ~u = u1u1 + · · ·+ unun = |~u |2

With this generalization, the angle between vectors in Rn can be defined as

θ = arccos
(

~u · ~v
|~u| |~v |

)
(3)

Vectors from Rn are orthogonal, that is, perpendicular, if and only if their dot product
is zero. They are parallel if and only if their dot product equals the product of their
lengths.

Example

These vectors (
1

−1

)
,

(
1

1

)
are orthogonal. The dot product between them is zero:(

1

−1

)
·

(
1

1

)
= (1)(1) + (−1)(1) = 0
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Example

The angle between the two vectors 0

3

2

 ,
 1

1

0


is

arccos
(

(1)(0) + (1)(3) + (0)(2)√
12 + 12 + 02

√
02 + 32 + 22

)
= arccos

(
3√
2
√
13

)
This is approximately 0.94 radians. Notice that these vectors are not orthogonal.
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3 Lines and Planes

3.1 Vector Representations of Lines

Having introduced points and vectors in Rn, we next turn to lines. Given a point P that
is on a line, and a vector ~v that is parallel to the line, the vector representation of the
line can be represented by

L = ~P + t~v

The vector ~P is the vector that, in canonical position, ends at point P.

Example in R2

In R2, the vector equation of line, L, that passes through points (1, 2) and (3, 1) is

L =

(
1

2

)
+ t

(
2

−1

)
, t ∈ R (4)

Why would this represent a line? First, note that for certain values of t, we obtain the
two given points that our line passes through:

• when t = 0, Equation (4) gives us the the vector that, in canonical position, ends
at the point (1, 2).

• when t = 1, Equation (4) gives us vector that, in canonical position, ends at the
point (3, 1).

For any other values of t, we have points that are parallel to the vector(
2

−1

)

In other words, different values of t corresponds to different points on the line L. We
can also express our line, L, using set builder notation:{(

1

2

)
+ t

(
2

−1

)
| t ∈ R

}

Either description is an expression of line L, depicted below.
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Example in R3

The line, L, that passes through points (1, 2, 1) and (2, 3, 2), is

L =

 1

2

1

+ t

 1

1

1


Notice that the vector  1

2

1


in canonical position gives the location of one of the given points on the line, and the
vector  1

1

1


is a vector parallel to the line that can be calculated from the two given points. Again,
we can express the line L in set notation as the set of (endpoints of) vectors of the form

 1

2

1

+ t

 1

1

1

 | t ∈ R

 .
In R3, a line uses one parameter so that a particle on that line would be free to move
back and forth in one dimension. A diagram of our line in R3 is shown below.
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3.2 Planes

Suppose that planeM passes through a point P0(x0, y0, z0), and is normal to the nonzero
vector

~n =

 A

B

C


Then M is the set of all points, P(x, y, z), for which the vector

−→
P0P is orthogonal to ~n.

In other words, if both P and P0 correspond to points in the plane, then the vector
−→
P0P

is parallel to the plane. Thus, the dot product ~n ·
−→
P0P = 0. This equation is equivalent

to

0 = ~n ·
−→
P0P

=

 A

B

C

 ·
 x− x0

y− y0

z− z0


= A(x− x0) + B(y− y0) + C(z− z0)

D = Ax+ By+ Cz, where D = Ax0 + By0 + Cz0

The equation Ax + By + Cz = D is the component equation of the plane M. Notice
that the coefficients of the variables x, y, and z give us the components of the normal
vector to the plane.

We can also represent a plane with set-builder notation. A line in R3 involves one
parameter. A plane in R3 involves two parameters. For example, the plane through the
points (1, 0, 5), (2, 1, 3), and (2, 4, 0.5) consists of (endpoints of) the vectors in the set

{

 1

0

5

+ t

 1

1

−8

+ s

 −3

4

−4.5

 | t, s ∈ R}
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The two vectors associated with parameters t and s are parallel to the plane. They can
be determined from these calculations. 1

1

−8

 =

 2

1

−3

−

 1

0

5

 , and

 −3

4

−4.5

 =

 −2

4

0.5

−

 1

0

5


As with the line, note that we can describe some points in this plane with negative
values of t, or negative values of s, or both.

Calculus books often describe a plane by using a single linear equation. For example,
this linear equation represents a plane:

2x+ y+ z = 4

To translate from this equation to a vector description, we can think of this as a one-
equation linear system and parametrize. The linear equation can be written as

x = 2− y/2− z/2

or  x

y

z

 =

 2

0

0

+ y

 −1/2

1

0

+ z

 −1/2

0

1


3.3 Lines and Planes in Rn

Generalizing, a set of the form

{~p+ t1~v1 + t2~v2 + · · ·+ tk~vk | t1, . . . , tk ∈ R}

where each of the vectors are in Rn,

~v1, . . . ,~vk ∈ Rn

and k ≤ n is a k-dimensional plane. For example,

L =


2

π

3

−0.5

+ t


1

0

0

0

 , t ∈ R

12



is a line in R4, and 
0

0

0

0

+ t


1

1

0

−1

+ s


2

0

1

0

 , t, s ∈ R

is a plane in R4, and
3

1

−2

0.5

+ r


0

0

0

−1

+ s


1

0

1

0

+ t


2

0

1

0

 , r, s, t ∈ R

is a hyperplane in R4. Again, the intuition is that a line permits motion in one direction,
a plane permits motion in combinations of two directions, etc.

3.4 Example: Finding the Equation of a Plane

Suppose we want to find the equation of the plane that passes through P(−3, 0, 7) and
is perpendicular to vector

~n =

 5

2

−1


LetQ(x, y, z) be a point in the plane. Then

−→
PQ is a vector parallel to the plane. Thus,

~n and
−→
PQ are perpendicular.

0 = ~n ·
−→
PQ =

 5

2

−1

 ·
 x+ 3

y− 0

z− 7


⇒ 5x+ 2y− z = −22

Note that the coefficients of our plane equation are the components of ~n, and vice
versa. We can use this to quickly identify the equation of a normal vector to a plane.

3.5 Example: Intersection Point Between a Line and a Plane

Line L passes through points P(0, 0, 2), and Q(−3, 2, 1). Find the point, if any, where L
intersects the plane x+ 4y− z = 10. We can begin by expressing line L in vector form.
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−→
PQ =

 −3

2

−1

 , L(t) =

 0

0

2

+ t

 −3

2

−1


The equation of our line gives us the expressions

x = −3t, y = 2t z = 2− t

Substituting these expressions into the equation of our plane gives us a linear polyno-
mial in t.

x+ 4y− z = 10

(−3t) + 4(2t) − (2− t) = 10

t = 2

Using t = 2, we can obtain the point where the line intersects the plane.

x = −3(2) = −6, y = 2(2) = 4, z = 2− 2 = 0

The point where the line meets the plane is (−6, 4, 0).

14


