MATH 1553-B FINAL EXAMINATION

Name									Section			
	1	2	3	4	5	6	7	8	9	10	Total	

Please **read all instructions** carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 100 points.
- You have 170 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work, unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Check your answers if you have time left! Most linear algebra computations can be easily verified for correctness.
- Good luck!

KEEP CALM AND ACE YOUR FINAL EXAMS **Problem 1.** [2 points each]

In this problem, you need not explain your answers.

a) The matrix $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ is in reduced row echelon form:

1. True 2. False

- **b)** How many solutions does the linear system corresponding to the augmented matrix $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ have?
 - 1. Zero.
 - 2. One.
 - 3. Infinity.
 - 4. Not enough information to determine.
- c) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Which of the following are equivalent to the statement that T is one-to-one? (Circle all that apply.)
 - 1. A has a pivot in each row.
 - 2. The columns of *A* are linearly independent.
 - 3. For all vectors v, w in \mathbb{R}^n , if T(v) = T(w) then v = w.
 - 4. *A* has *n* columns.
 - 5. Nul $A = \{0\}$.
- d) Every square matrix has a (real or) complex eigenvalue.
 - 1. True 2. False
- e) Let A be an $n \times n$ matrix, and let T(x) = Ax be the associated matrix transformation. Which of the following are equivalent to the statement that A is *not* invertible? (Circle all that apply.)
 - 1. There exists an $n \times n$ matrix B such that AB = 0.
 - 2. $\operatorname{rank} A = 0$.
 - 3. $\det(A) = 0$.
 - 4. Nul $A = \{0\}$.
 - 5. There exist $v \neq w$ in \mathbb{R}^n such that T(v) = T(w).

Solution.

- **a)** 2 (false).
- **b)** 1 (zero). The corresponding system is inconsistent.
- **c)** 2, 3, 5. If *A* has a pivot in each row, then *T* is *onto*. Option 3 is the definition of one-to-one.
- **d)** 1 (true). Its characteristic polynomial always has a complex root.
- **e)** 3, 5. Option 1 is always true: take B = 0. Option 2 means A = 0. Option 5 means T is not one-to-one.

In this problem, you need not explain your answers.

- a) Let *A* be an $m \times n$ matrix, and let *b* be a vector in \mathbb{R}^m . Which of the following are equivalent to the statement that Ax = b is consistent? (Circle all that apply.)
 - 1. *b* is in Nul*A*.
 - 2. *b* is in Col*A*.
 - 3. *A* has a pivot in every row.
 - 4. The augmented matrix $(A \mid b)$ has no pivot in the last column.
- **b)** Let $A = \begin{pmatrix} 1 & a & 0 \\ 0 & b & 0 \\ 0 & 0 & 2 \end{pmatrix}$. For what values of a and b is A diagonalizable? (Circle all that apply.)
 - 1. a = 1, b = 1 2. a = 2, b = 1 3. a = 1, b = 2 4. a = 0, b = 1
- c) Let W be the subset of \mathbb{R}^2 consisting of the x-axis and the y-axis. Which of the following are true? (Circle all that apply.)
 - 1. *W* contains the zero vector.
 - 2. If v is in W, then all scalar multiples of v are in W.
 - 3. If v and w are in W, then v + w is in W.
 - 4. W is a subspace of \mathbb{R}^2 .
- **d)** Every subspace of \mathbf{R}^n admits an orthogonal basis:
 - 1. True 2. False
- e) Let x and y be nonzero orthogonal vectors in \mathbb{R}^n . Which of the following are true? (Circle all that apply.)
 - 1. $x \cdot y = 0$
 - 2. $||x y||^2 = ||x||^2 + ||y||^2$
 - 3. $\text{proj}_{\text{Span}\{x\}}(y) = 0$
 - 4. $\text{proj}_{\text{Span}\{y\}}(x) = 0$

Solution.

- a) 2, 4. Option 3 means Ax = b is consistent for every b.
- **b)** 3, 4.
- **c)** 1, 2. Note that e_1 and e_2 are in W, but $e_1 + e_2$ is not.
- d) 1 (true). Take any basis, and apply Gram-Schmidt.
- **e)** 1, 2, 3, 4.

Short answer questions: you need not explain your answers.

a) Let A be an $n \times n$ matrix. Write the definition of an eigenvector and an eigenvalue of A.

b) Let *A* be a positive stochastic matrix with steady state $w = \binom{1/3}{2/3}$. What does $A^n \binom{9}{0}$ converge to as $n \to \infty$?

c) Give an example of a 2×2 matrix that has no (real) eigenvectors.

d) Let W be the span of (1,1,1,1) in \mathbb{R}^4 . Find a matrix whose null space is W^{\perp} .

e) Let *A* be a 3 × 3 matrix that is obtained from the identity matrix by the following row operations: (1) swap rows 1 and 2 (2) add 2×row 3 to row 1 (3) multiply row 1 by 3. Write *A* as a product of elementary matrices. (You need not compute the product.)

Solution.

- a) An eigenvector of A is a nonzero vector v in \mathbf{R}^n such that $Av = \lambda v$, for some λ in \mathbf{R} . An eigenvalue of A is a number λ in \mathbf{R} such that the equation $Av = \lambda v$ has a nontrivial solution.
- **b)** $9w = \binom{3}{6}$.
- **c)** The matrix for rotation by any angle that is not a multiple of 180 degrees works. For instance,

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

d) (1 1 1 1)

e)
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Let

$$A = \begin{pmatrix} -5 & 1 & -1 \\ -6 & 5 & 3 \\ 0 & 1 & 1 \end{pmatrix}.$$

- **a)** Compute A^{-1} and det(A).
- **b)** Solve for x in terms of the variables b_1, b_2, b_3 :

$$Ax = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Solution.

a) One way to invert A is to row reduce the augmented matrix $(A \mid I)$:

$$\begin{pmatrix} -5 & 1 & -1 & 1 & 0 & 0 \\ -6 & 5 & 3 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & 0 & 1 & -1 & 4 \\ 0 & 1 & 0 & 3 & -\frac{5}{2} & \frac{21}{2} \\ 0 & 0 & 1 & -3 & \frac{5}{2} & -\frac{19}{2} \end{pmatrix}.$$

Hence

$$A^{-1} = \begin{pmatrix} 1 & -1 & 4 \\ 3 & -\frac{5}{2} & \frac{21}{2} \\ -3 & \frac{5}{2} & -\frac{19}{2} \end{pmatrix}.$$

One can simultaneously compute det(A) by keeping track of the row swaps and the row scaling; the answer is det(A) = 2.

b)
$$x = A^{-1} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 4 \\ 3 & -\frac{5}{2} & \frac{21}{2} \\ -3 & \frac{5}{2} & -\frac{19}{2} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} b_1 - b_2 + 4b_3 \\ 3b_1 - \frac{5}{2}b_2 + \frac{21}{2}b_3 \\ -3b_1 + \frac{5}{2}b_2 - \frac{19}{2}b_3 \end{pmatrix}$$

Problem 5.

Consider the matrix

$$A = \begin{pmatrix} 2 & 5 & 0 \\ 0 & 1 & 4 \\ 1 & 0 & 5 \end{pmatrix}.$$

- a) [4 points] Find an orthogonal basis for ColA.
- **b)** [4 points] Find a *QR* factorization of *A*.
- **c)** [2 points] Find a different orthogonal basis for Col*A*. (Reordering and scaling your basis in (a) does not count.)

Solution.

a) Let

$$v_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix}$$

be the columns of A. We will perform Gram–Schmidt on $\{v_1, v_2, v_3\}$. Let

$$u_{1} = v_{1} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

$$u_{2} = v_{2} - \frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} = v_{2} - 2u_{1} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

$$u_{3} = v_{3} - \frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} = v_{3} - u_{1} + u_{2} = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}.$$

Then $\{u_1, u_2, u_3\}$ is an orthogonal basis for Col*A*.

b) First we solve for v_1, v_2, v_3 in terms of u_1, u_2, u_3 :

$$v_1 = \frac{1}{2}u_1$$
 $v_2 = \frac{2}{2}u_1 + 1u_2$ $v_3 = \frac{1}{2}u_1 - 1u_2 + 1u_3$.

Therefore,

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{1} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dividing the columns of the first matrix by the length of the column, and multiplying the rows of the second by the same factor, gives the *QR* factorization

$$A = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{6}} & \frac{5}{\sqrt{30}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{6}} & \frac{2}{\sqrt{30}} \end{pmatrix} \begin{pmatrix} \sqrt{5} & 2\sqrt{5} & \sqrt{5} \\ 0 & \sqrt{6} & -\sqrt{6} \\ 0 & 0 & \sqrt{30} \end{pmatrix}.$$

Problem 6.

Suppose that your roomate Jamie is currently taking Math 1551. Jamie scored 72% on the first exam, 81% on the second exam, and 84% on the third exam. Not having taken linear algebra yet, Jamie does not know what kind of score to expect on the final exam. Luckily, you can help out.

- a) [4 points] The general equation of a line in \mathbb{R}^2 is y = C + Dx. Write down the system of linear equations in C and D that would be satisfied by a line passing through the points (1,72), (2,81), and (3,84), and then write down the corresponding matrix equation.
- **b)** [4 points] Solve the corresponding least squares problem for *C* and *D*, and use this to *write down* and *draw* the the best fit line below.

c) [2 points] What score does this line predict for the fourth (final) exam?

Solution.

a) If y = C + Dx were satisfied by all three points, then we would have

$$72 = C + D(1)$$

$$81 = C + D(2)$$

$$84 = C + D(3)$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 72 \\ 81 \\ 84 \end{pmatrix}.$$

b) The least squares problem is

Hence C = 67 and D = 6.

c)
$$67 + 6(4) = 91\%$$

Problem 7.

Consider the vectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 2 \\ 0 \\ -2 \\ 0 \end{pmatrix} \qquad v_4 = \begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

and the subspace $W = \text{Span}\{v_1, v_2, v_3, v_4\}$.

- a) [2 points] Find a linear dependence relation among v_1, v_2, v_3, v_4 .
- **b)** [3 points] What is the dimension of *W*?
- c) [3 points] Which subsets of $\{v_1, v_2, v_3, v_4\}$ form a basis for W?
- **d)** [2 points] Choose a basis \mathcal{B} for W from (c), and find the \mathcal{B} -coordinates of the vector w = (0, 0, 4, 0).

[*Hint*: it is helpful, but not necessary, to use the fact that $\{v_1, v_2, v_3\}$ is orthogonal.]

Solution.

a) We know that $\{v_1, v_2, v_3\}$ is linearly independent, because it is an orthogonal set. Hence v_4 must be a linear combination of v_1, v_2, v_3 , i.e., v_4 is in Span $\{v_1, v_2, v_3\}$. We can compute the coordinates using dot products:

$$v_4 = \frac{v_4 \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{v_4 \cdot v_2}{v_2 \cdot v_2} v_2 + \frac{v_4 \cdot v_3}{v_3 \cdot v_3} v_3 = v_1 + v_2 + v_3.$$

Hence $v_1 + v_2 + v_3 - v_4 = 0$ is a linear dependence relation.

- **b)** We know that $\{v_1, v_2, v_3\}$ is linearly independent, and it spans W because v_4 is in $\text{Span}\{v_1, v_2, v_3\}$. Thus $\dim(W) = 3$.
- **c)** Any set of three vectors from $\{v_1, v_2, v_3, v_4\}$ spans W, because the fourth is a linear combination of the other three (from $v_1 + v_2 + v_3 v_4 = 0$). Hence any three vectors in $\{v_1, v_2, v_3, v_4\}$ is a basis for W.
- **d)** We choose the basis $\mathcal{B} = \{v_1, v_2, v_3\}$. Then

$$[w]_{\mathcal{B}} = \left(\frac{w \cdot v_1}{v_1 \cdot v_1}, \frac{w \cdot v_2}{v_2 \cdot v_2}, \frac{w \cdot v_3}{v_3 \cdot v_3}\right) = (1, 1, -1).$$

Alternatively, you can ignore the fact that $\{v_1, v_2, v_3\}$ is orthogonal and use row reduction in (a), (b), and (d), but this requires more work.

Problem 8.

Let

$$A = \begin{pmatrix} 1 & 3 & 1 & 1 \\ -1 & -3 & -4 & 2 \\ 5 & 15 & 1 & 9 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ 1 \\ 14 \end{pmatrix}.$$

- a) [3 points] Find the parametric vector form of the solution set of Ax = b.
- **b)** [2 points] Find a basis for NulA.
- c) [2 points] What are dim(NulA) and dim((NulA) $^{\perp}$)?
- **d)** [3 points] Find a basis for $(NulA)^{\perp}$.

Solution.

a) Row reducing the augmented matrix $(A \ b)$ yields

$$\begin{pmatrix}
1 & 3 & 0 & 2 & 3 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.$$

The variables x_2 and x_4 are free. The parametric form and the parametric vector form of the general solution are

b) We can read off the null space from the parametric vector form; a basis is

$$\left\{ \begin{pmatrix} -3\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1\\1 \end{pmatrix} \right\}.$$

c) From (b) we see dim(NulA) = 2. Since NulA is a subspace of \mathbb{R}^4 , we have dim((NulA) $^{\perp}$) = 4 - dim(NulA) = 2.

d) Recall that $(\text{Nul}A)^{\perp} = \text{Row}A$. The first two rows of *A* are not multiples of each other, so they are linearly independent. We know already that $\dim((\text{Nul}A)^{\perp}) = 2$, so the first two rows of *A* form a basis:

$$\left\{ \begin{pmatrix} 1\\3\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-3\\-4\\2 \end{pmatrix} \right\}.$$

Problem 9.

Consider the matrix

$$A = \begin{pmatrix} 3 & 2 \\ -10 & 7 \end{pmatrix}.$$

- **a)** [2 points] Compute the characteristic polynomial of *A*.
- **b)** [2 points] The complex number $\lambda = 5 4i$ is an eigenvalue of A. What is the other eigenvalue? Produce eigenvectors for both eigenvalues.
- **c)** [3 points] Find an invertible matrix P and a rotation-scaling matrix C such that

$$A = PCP^{-1}$$
.

- **d)** [1 point] By what factor does *C* scale?
- e) [2 points] What ray does C rotate the positive x-axis onto? Draw it below.

Solution.

- a) $f(\lambda) = \lambda^2 \text{Tr}(A)\lambda + \det(A) = \lambda^2 10\lambda + 41$.
- **b)** The other eigenvalue is $\overline{\lambda} = 5 + 4i$.

$$A - \lambda I = \begin{pmatrix} -2 + 4i & 2 \\ \star & \star \end{pmatrix} \xrightarrow{\text{eigenvector}} v = \begin{pmatrix} 2 \\ 2 - 4i \end{pmatrix}.$$

Hence an eigenvector for $\overline{\lambda}$ is $\overline{\nu} = \begin{pmatrix} 2 \\ 2+4i \end{pmatrix}$.

c) We can take

$$P = (\operatorname{Re} \nu \operatorname{Im} \nu) = \begin{pmatrix} 2 & 0 \\ 2 & -4 \end{pmatrix}$$
 and $C = \begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix} = \begin{pmatrix} 5 & -4 \\ 4 & 5 \end{pmatrix}$.

d) C scales by $|\lambda| = \sqrt{5^2 + 4^2} = \sqrt{41}$.

Problem 10.

Let *L* be a line through the origin in \mathbb{R}^2 . The **reflection over** *L* is the linear transformation $\operatorname{ref}_L: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\operatorname{ref}_{L}(x) = x - 2x_{L^{\perp}} = 2 \operatorname{proj}_{L}(x) - x.$$

a) [3 points] Draw (and label) $\operatorname{ref}_L(u)$, $\operatorname{ref}_L(v)$, and $\operatorname{ref}_L(w)$ in the picture below. [*Hint:* think geometrically]

In what follows, L does not necessarily refer to the line pictured above.

- **b)** [2 points] If *A* is the matrix for ref_{*L*}, what is A^2 ?
- c) [3 points] What are the eigenvalues and eigenspaces of A?
- **d)** [2 points] Is A diagonalizable? If so, what diagonal matrix is it similar to?

Solution.

b) Reflecting over L twice brings you back to where you started. Hence $\operatorname{ref}_L \circ \operatorname{ref}_L$ is the identity transformation, so $A^2 = I$.

Alternatively, since $\operatorname{ref}_L(x) = 2\operatorname{proj}_L(x) - x$, the matrix for ref_L is 2B - I, where B is the matrix for proj_L . Hence

$$A^{2} = (2B - I)^{2} = 4B^{2} - 4B + I = 4B - 4B + I = I.$$

- **c)** Anything in L is fixed by ref_L , so 1 is an eigenvalue, and L is the 1-eigenspace. If x is in L^{\perp} then $\operatorname{ref}_L(x) = -x$, so -1 is an eigenvalue, and L^{\perp} is the (-1)-eigenspace. There cannot be any more eigenvalues or eigenvectors.
- **d)** Yes: it is similar to the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

[Scratch work]

[Scratch work]