MATH 1553-B
 PRACTICE FINAL

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	6	7	8	9	10	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 100 points.
- You have 170 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Check your answers if you have time left! Most linear algebra computations can be easily verified for correctness.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 170 minutes, without notes or distractions.

In this problem, you need not explain your answers.
a) The matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ has:

1. zero free variables.
2. one free variable.
3. two free variables.
4. three free variables.
b) How many solutions does the linear system corresponding to the augmented matrix $\left(\begin{array}{ll|l}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ have?
5. zero.
6. one.
7. infinity.
8. not enough information to determine.
c) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Which of the following are equivalent to the statement that T is onto? (Circle all that apply.)
9. A has a pivot in each row.
10. The columns of A are linearly independent.
11. If $T(v)=T(w)$ then $v=w$.
12. For each input v, T there is exactly one output $T(v)$.
d) Let A be a 2×2 matrix such that $\operatorname{Nul} A$ is the line $y=x$. Let b be a nonzero vector in \mathbf{R}^{2}. Which of the following are definitely not the solution set of $A x=b$? (Circle all that apply.)
13. The line $y=x$.
14. The y-axis.
15. The line $y=x+1$
16. The set $\{0\}$.
17. The empty set.
e) Let A be an $n \times n$ matrix. Which of the following are equivalent to the statement that A is invertible? (Circle all that apply.)
18. The reduced row echelon form of A is the identity matrix.
19. A is similar to the identity matrix.
20. A is diagonalizable.
21. There is a matrix B such that $A B$ is the identity matrix.
22. 0 is not an eigenvalue of A.

Solution.

a) 2. The first column corresponds to a free variable.
b) 2. The solution is $x=1$ and $y=0$.
c) 1 only. Options 2 and 3 are equivalent to T being one-to-one, and option 4 is true for any transformation.
d) 1,2 , and 4 . The solution set of $A x=b$ is either empty or a translate of Nul A by a nonzero vector, namely, a specific solution to $A x=b$.
e) 1,4 , and 5 . The only matrix that is similar to the identity matrix is the identity matrix iself, and the zero matrix is diagonal(izable).

In this problem, you need not explain your answers.
a) Let A be an $n \times n$ matrix. Which of the following statements are equivalent to the statement that A is diagonalizable over the real numbers? (Circle all that apply.)

1. A is similar to a diagonal matrix.
2. A has at least one eigenvector for each eigenvalue.
3. For each real eigenvalue λ of A, the dimension of the λ-eigenspace is equal to the algebraic multiplicity of λ.
4. A has n linearly independent eigenvectors.
5. A is invertible.
b) Let A be a 5×3 matrix. Supposes that $\mathrm{Nul} A$ is a line. What is the range of the transformation $T(x)=A x$?
6. A line in \mathbf{R}^{3}.
7. A plane in \mathbf{R}^{3}.
8. A line in \mathbf{R}^{5}.
9. A plane in \mathbf{R}^{5}.
c) Which of the following are subspaces of \mathbf{R}^{n} ? (Circle all that apply.)
10. The null space of an $m \times n$ matrix.
11. An eigenspace of an $n \times n$ matrix (for a particular eigenvalue).
12. The column space of an $m \times n$ matrix.
13. The span of $n-1$ vectors in \mathbf{R}^{n}.
14. W^{\perp} where W is a subspace of \mathbf{R}^{n}.
d) Let A be a 3×3 matrix. Suppose that A has eigenvalues 3 and 5 , and that the 5 -eigenspace is a line in \mathbf{R}^{3}. Is A diagonalizable?
15. Yes
16. No
17. Maybe
e) Let W be a line in \mathbf{R}^{4}. What is the dimension of W^{\perp} ?
18. one
19. two
20. three
21. four
22. not enough information

Solution.

a) 1 and 4. A matrix by definition has at least one eigenvector for each eigenvalue. In option 3, a matrix need not have any real eigenvalues. Invertibility is unrelated to diagonalizability.
b) 4. The codomain of T is \mathbf{R}^{5}, because A has five rows. By the Rank-Nullity Theorem, the rank of A is $3-1=2$, the number of columns minus the dimension of NulA. Therefore, the rank of A is 2 , so the column space of A is a plane in \mathbf{R}^{5}. The range of T is the column space of A.
c) $1,2,4$, and 5 . The column space of an $m \times n$ matrix is a subspace of \mathbf{R}^{m}, not \mathbf{R}^{n}. Any null space, eigenspace, perp space, or span is a subspace.
d) 3 . In this situation, A is diagonalizable if and only if the 3 -eigenspace is a plane. For example, the matrix

$$
\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right) \text { is not diagonalizable, but }\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right) \text { is. }
$$

e) 3. For any subspace W of \mathbf{R}^{4}, we have $\operatorname{dim} W+\operatorname{dim} W^{\perp}=4$.

Problem 3.

Short answer questions: you need not explain your answers.
a) What is the area of the triangle in \mathbf{R}^{2} with vertices $(1,1),(5,6)$, and $(6,7)$?
b) Let A be an $n \times n$ matrix. Write the definition of an eigenvector and angenvalue of A.
c) Let W be a plane through the origin in \mathbf{R}^{3}. What are the eigenvalues of the matrix for proj_{W} ?
d) Give an example of a 2×2 matrix that is neither diagonalizable nor invertible.
e) Find a formula for A^{n}, where

$$
A=\left(\begin{array}{cc}
2 & 6 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)^{-1} .
$$

Your answer should be a single matrix whose entries depend on n.

Solution.

a) Two sides of this triangle are the vectors $v_{1}=\binom{5}{6}-\binom{1}{1}=\binom{4}{5}$ and $v_{2}=\binom{6}{7}-\binom{1}{1}=$ $\binom{5}{6}$. The area of the parallelogram spanned by v_{1} and v_{2} is the absolute value of $\operatorname{det}\left(\begin{array}{ll}4 & 5 \\ 5 & 6\end{array}\right)=-1$. The triangle has half this area, namely, $\frac{1}{2}$.
b) An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
c) An orthogonal projection always has eigenvalues 0 and 1. The 1-eigenspace is W, and the 0 -eigenspace is W^{\perp}.
d) $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
e)

$$
\begin{aligned}
A^{n} & =\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)^{n}\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & (-1)^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{n} & (-1)^{n+1} 2 \\
0 & (-1)^{n}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{n} & 2^{n+1}+(-1)^{n+1} 2 \\
0 & (-1)^{n}
\end{array}\right)
\end{aligned}
$$

Problem 4.

The following diagram describes the traffic around the town square in terms of the number of cars per minute on each street. All streets are one-way streets, indicated by the arrows. The dots indicate intersections.

a) [4 points] Write a system of linear equations in x, y, z, w whose solution gives the number of cars per minute on each of the streets in the square.
b) [4 points] Convert your system of linear equations into an augmented matrix and solve for x, y, z, w.
c) [2 points] In (b), you should have found infinitely many solutions. What feature of this traffic arrangement allows for such a phenomenon?

Solution.

a) The number of cars coming into each intersection must equal the number of cars leaving. This gives rise to the system of equations

$$
\left\{\begin{array} { r l }
{ w } & { = 1 0 + x } \\
{ 1 0 + x } & { = y } \\
{ 1 0 + y } & { = z } \\
{ z } & { = 1 0 + w }
\end{array} \Longrightarrow \left\{\begin{array}{rl}
-x & =10 \\
x-y & =-10 \\
y-z & =-10 \\
z-w & =10
\end{array}\right.\right.
$$

b) $\left(\begin{array}{rrrr|r}-1 & 0 & 0 & 1 & 10 \\ 1 & -1 & 0 & 0 & -10 \\ 0 & 1 & -1 & 0 & -10 \\ 0 & 0 & 1 & -1 & 10\end{array}\right) \begin{gathered}\text { row reduce }\end{gathered}\left(\begin{array}{llll|r}1 & 0 & 0 & -1 & -10 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 10 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.

This means $x=w-10, y=w, z=w+10$, and w is free.
c) There is a cycle around the town square. You could (in theory) have arbitrarily many cars just driving around in circles.

Problem 5.

Let L be the line $x=y$ in \mathbf{R}^{2}.
a) [3 points] Compute the matrices for proj_{L} and $\operatorname{proj}_{L^{\perp}}$.
b) [3 points] Is proj_{L} or $\operatorname{proj}_{L^{\perp}}$ one-to-one?
c) [3 points] What is the range of $\operatorname{proj}_{L} \circ \operatorname{proj}_{L^{\perp}}$?
d) [1 point] What is $\operatorname{proj}_{L}\binom{2}{1}$?

Solution.

a) The line L is spanned by the vector $v=\binom{1}{1}$, and L^{\perp} is spanned by $w=\binom{-1}{1}$. Therefore

$$
\operatorname{proj}_{L}(y)=\frac{y \cdot v}{v \cdot v} v \quad \operatorname{proj}_{L^{\perp}}(y)=\frac{y \cdot w}{w \cdot w} w .
$$

We compute

$$
\begin{aligned}
\operatorname{proj}_{L}\left(e_{1}\right) & =\frac{e_{1} \cdot v}{v \cdot v} v=\frac{1}{2}\binom{1}{1}
\end{aligned} \operatorname{proj}_{L}\left(e_{2}\right)=\frac{e_{2} \cdot v}{v \cdot v} v=\frac{1}{2}\binom{1}{1}
$$

Therefore, the matrices for proj_{L} and $\operatorname{proj}_{L^{\perp}}$ are, respectively,

$$
\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

b) Neither is one-to-one. Every vector in L^{\perp} maps to zero under proj ${ }_{L}$, and every vector in L maps to zero under $\operatorname{proj}_{L^{+}}$.
c) Projecting onto L^{\perp} and then onto L sends everything to the zero vector, since anything in L^{\perp} projects onto the zero vector under proj_{L}. Therefore, the range of $\operatorname{proj}_{L} \circ \operatorname{proj}_{L^{\perp}}$ is $\{0\}$.
d) $\operatorname{proj}_{L}\binom{2}{1}=\frac{\binom{2}{1} \cdot v}{v \cdot v} v=\frac{3}{2}\binom{1}{1}$.

Problem 6.

Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

a) [3 points] Find the eigenvalues of A along with their algebraic multiplicities.
b) [3 points] For each eigenvalue of A, find a basis for the corresponding eigenspace.
c) [3 points] Is A diagonalizable? If so, exhibit an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If not, explain why.
d) [1 point] Is A the matrix for the orthogonal projection onto a subspace of \mathbf{R}^{3} ? Why or why not?

Solution.

a) Expanding along the third row, we compute the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
0 & 0 & -\lambda
\end{array}\right) \\
& =-\lambda\left[(1-\lambda)^{2}-1\right]=-\lambda\left(1-2 \lambda+\lambda^{2}-1\right)=-\lambda^{2}(\lambda-2) .
\end{aligned}
$$

The eigenvalues are 0 and 2, with respective multiplicities 2 and 1.
b) The 0 -eigenspace is the null space of A, which we compute:

Thus a basis for the 0-eigenspace is

$$
\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\} .
$$

Next we compute a basis for the 2-eigenspace, which is $\operatorname{Nul}(A-2 I)$:

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
0 & 0 & -2
\end{array}\right) \underset{\text { minu }}{\operatorname{rref}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \underset{\text { minu }}{ }\left\{\begin{array}{l}
x=y \\
y=y \\
z=0
\end{array} \text { minus }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .\right.
$$

Thus a basis for the 2-eigenspace is

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\} .
$$

c) There are three linearly independent eigenvectors, so $A=P D P^{-1}$ with

$$
P=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

d) No, an orthogonal projection has eigenvalues 0 and 1 .

Problem 7.

Consider the matrix

$$
A=\left(\begin{array}{ll}
-2 & 5 \\
-2 & 4
\end{array}\right) .
$$

a) [2 points] Find the (complex) eigenvalues of A.
b) [2 points] For each eigenvalue, find an eigenvector.
c) [2 points] Find a rotation-scaling matrix C that is similar to A.
d) [1 point] How much does C scale?
e) [1 point] How much does C rotate?
f) [2 points] Draw a picture of how iterated applications of A acts on the plane.

Solution.

a) The characteristic polynomial is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-2 \lambda+2 .
$$

Using the quadratic formula, we find

$$
\lambda=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i .
$$

b) First we compute an element of $\operatorname{Nul}(A-(1-i) I)$:

$$
A-(1-i) I=\left(\begin{array}{cc}
-3+i & 5 \\
\star & \star
\end{array}\right) .
$$

The second row is a multiple of the first, so an eigenvector is $v=\binom{5}{3-i}$. Hence an eigenvector for $1+i$ is $\bar{v}=\binom{5}{3+i}$.
c) If $\lambda=1-i$, then we can take

$$
C=\left(\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

d) C scales by $|\lambda|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$.
e) C rotates by the argument of $\bar{\lambda}=1+i$:

f) Multiplication by C rotates counterclockwise by $\pi / 4$ around a circle, and scales by $\sqrt{2}$. Multiplication by A does the same, but with respect to the basis

$$
\{\operatorname{Re}(v), \operatorname{Im}(v)\}=\left\{\binom{5}{3},\binom{0}{-1}\right\}
$$

where $v=\binom{5}{3-i}$ is an eigenvector with eigenvalue λ. Hence repeated applications

Problem 8.

Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
1 & 0 & 4 \\
0 & 1 & 2
\end{array}\right)
$$

a) Find an orthogonal basis for $\operatorname{Col} A$.
b) Find a $Q R$ factorization of A.

Solution.

a) Let

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
2 \\
4 \\
2
\end{array}\right)
$$

be the columns of A. We will perform Gram-Schmidt on $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let

$$
\begin{aligned}
& u_{1}=v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
& u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)-\frac{2}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
& u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left(\begin{array}{l}
2 \\
4 \\
2
\end{array}\right)-\frac{6}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{0}{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right) .
\end{aligned}
$$

An orthogonal basis for $\operatorname{Col} A$ is

$$
\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)\right\} .
$$

(Actually, $\operatorname{Col} A=\mathbf{R}^{3}$, so the standard basis e_{1}, e_{2}, e_{2} is also an orthogonal basis of $\operatorname{Col} A$. However, we still need to do Gram-Schmidt for part (b).)
b) Solving for v_{1}, v_{2}, v_{3} in terms of u_{1}, u_{2}, u_{3} above, we get

$$
\begin{aligned}
& v_{1}=u_{1} \\
& v_{2}=1 u_{1}+u_{2} \\
& v_{3}=3 u_{1} \quad+u_{3} .
\end{aligned}
$$

In matrix form,

$$
\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
u_{1} & u_{2} & u_{3} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Hence $A=\widehat{Q} \widehat{R}$, where

$$
\widehat{Q}=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
u_{1} & u_{2} & u_{3} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 & 1 \\
0 & 1 & 2
\end{array}\right) \quad \text { and } \quad \widehat{R}=\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We scale the columns of \widehat{Q} to obtain a matrix Q with orthonormal columns, and we scale the rows of \widehat{R} by the opposite factor, to obtain $A=Q R$ where

$$
Q=\left(\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{3} & -1 / \sqrt{6} \\
1 / \sqrt{2} & -1 / \sqrt{3} & 1 / \sqrt{6} \\
0 & 1 / \sqrt{3} & 2 / \sqrt{6}
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{rrr}
\sqrt{2} & \sqrt{2} & 3 \sqrt{2} \\
0 & \sqrt{3} & 0 \\
0 & 0 & \sqrt{6}
\end{array}\right) .
$$

In this problem, you will find the best-fit line through the points $(0,6),(1,0)$, and $(2,0)$.
a) The general equation of a line in \mathbf{R}^{2} is $y=C+D x$. Write down the system of linear equations in C and D that would be satisfied by a line passing through all three points, then write down the corresponding matrix equation.
b) Solve the least squares problem in (a) for C and D. Give the equation for the best fit line, and graph it along with the three points.

Solution.

a) If $y=C+D x$ were satisfied by all three points, then we would have

$$
\begin{aligned}
& 6=C+D(0) \\
& 0=C+D(1) \quad \text { muns } \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

b) The solution to the least squares problem in (a) is the solution to

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \widehat{x}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)
$$

Multiplying everything out and putting into an augmented matrix, this is

$$
\left(\begin{array}{rr|r}
3 & 3 & 6 \\
3 & 5 & 0
\end{array}\right) \underset{\text { mum }}{\text { rref }}\left(\begin{array}{ll|r}
1 & 0 & 5 \\
0 & 1 & -3
\end{array}\right) .
$$

Thus the least squares solution is $(C, D)=(5,-3)$, so the best fit line is $y=5-3 x$.

Problem 10.

Let A be a 3×2 matrix with orthogonal columns v_{1}, v_{2}. Explain why the least-squares solution to $A x=b$ is

$$
\binom{\frac{b \cdot v_{1}}{v_{1} \cdot v_{1}}}{\frac{b \cdot v_{2}}{v_{2} \cdot v_{2}}}
$$

Solution.

The closest output vector is $\widehat{b}=\operatorname{proj}_{\text {ColA }}(b)$. Since $v_{1} \perp v_{2}$, we can directly compute

$$
\widehat{b}=\frac{b \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{b \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=A\binom{\frac{b \cdot v_{1}}{v_{1} \cdot v_{1}}}{\frac{b \cdot v_{2}}{v_{2} \cdot v_{2}}} .
$$

But $\widehat{b}=A \widehat{x}$, so we must have

$$
\widehat{x}=\binom{\frac{b \cdot v_{1}}{v_{1} \cdot v_{1}}}{\frac{b \cdot v_{2}}{v_{2} \cdot v_{2}}} .
$$

[Scratch work]
[Scratch work]

