MATH 1553-B PRACTICE FINAL

Name									Section			
	1	2	3	4	5	6	7	8	9	10	Total	

Please **read all instructions** carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 100 points.
- You have 170 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Check your answers if you have time left! Most linear algebra computations can be easily verified for correctness.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 170 minutes, without notes or distractions.

In this problem, you need not explain your answers.

- a) The matrix $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ has:
 - 1. zero free variables.
 - 2. one free variable.
 - 3. two free variables.
 - 4. three free variables.
- **b)** How many solutions does the linear system corresponding to the augmented matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ have?
 - 1. zero.
 - 2. one.
 - 3. infinity.
 - 4. not enough information to determine.
- c) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Which of the following are equivalent to the statement that T is onto? (Circle all that apply.)
 - 1. A has a pivot in each row.
 - 2. The columns of *A* are linearly independent.
 - 3. If T(v) = T(w) then v = w.
 - 4. For each input v, T there is exactly one output T(v).

- d) Let A be a 2×2 matrix such that NulA is the line y = x. Let b be a nonzero vector in \mathbb{R}^2 . Which of the following are definitely not the solution set of Ax = b? (Circle all that apply.)
 - 1. The line y = x.
 - 2. The y-axis.
 - 3. The line y = x + 1
 - 4. The set {0}.
 - 5. The empty set.
- e) Let A be an $n \times n$ matrix. Which of the following are equivalent to the statement that A is invertible? (Circle all that apply.)
 - 1. The reduced row echelon form of *A* is the identity matrix.
 - 2. *A* is similar to the identity matrix.
 - 3. *A* is diagonalizable.
 - 4. There is a matrix *B* such that *AB* is the identity matrix.
 - 5. 0 is not an eigenvalue of *A*.

Solution.

- a) 2. The first column corresponds to a free variable.
- **b)** 2. The solution is x = 1 and y = 0.
- **c)** 1 only. Options 2 and 3 are equivalent to *T* being *one-to-one*, and option 4 is true for any transformation.
- **d)** 1, 2, and 4. The solution set of Ax = b is either empty or a translate of Nul*A* by a nonzero vector, namely, a specific solution to Ax = b.
- **e)** 1, 4, and 5. The only matrix that is similar to the identity matrix is the identity matrix iself, and the zero matrix is diagonal(izable).

Problem 2. [2 points each]

In this problem, you need not explain your answers.

a) Let A be an $n \times n$ matrix. Which of the following statements are equivalent to the statement that A is diagonalizable over the real numbers? (Circle all that apply.)

- 1. *A* is similar to a diagonal matrix.
- 2. *A* has at least one eigenvector for each eigenvalue.
- 3. For each real eigenvalue λ of A, the dimension of the λ -eigenspace is equal to the algebraic multiplicity of λ .
- 4. *A* has *n* linearly independent eigenvectors.
- 5. *A* is invertible.
- **b)** Let *A* be a 5×3 matrix. Supposes that Nul *A* is a line. What is the range of the transformation T(x) = Ax?
 - 1. A line in \mathbb{R}^3 .
 - 2. A plane in \mathbb{R}^3 .
 - 3. A line in \mathbb{R}^5 .
 - 4. A plane in \mathbb{R}^5 .
- c) Which of the following are subspaces of \mathbb{R}^n ? (Circle all that apply.)
 - 1. The null space of an $m \times n$ matrix.
 - 2. An eigenspace of an $n \times n$ matrix (for a particular eigenvalue).
 - 3. The column space of an $m \times n$ matrix.
 - 4. The span of n-1 vectors in \mathbb{R}^n .
 - 5. W^{\perp} where W is a subspace of \mathbb{R}^n .
- d) Let A be a 3×3 matrix. Suppose that A has eigenvalues 3 and 5, and that the 5-eigenspace is a line in \mathbb{R}^3 . Is A diagonalizable?
 - 1. Yes 2. No 3. Maybe
- e) Let W be a line in \mathbb{R}^4 . What is the dimension of W^{\perp} ?
 - 1. one 2. two 3. three 4. four 5. not enough information

Solution.

- **a)** 1 and 4. A matrix by definition has at least one eigenvector for each eigenvalue. In option 3, a matrix need not have any real eigenvalues. Invertibility is unrelated to diagonalizability.
- **b)** 4. The codomain of T is \mathbb{R}^5 , because A has five rows. By the Rank-Nullity Theorem, the rank of A is 3-1=2, the number of columns minus the dimension of NulA. Therefore, the rank of A is 2, so the column space of A is a plane in \mathbb{R}^5 . The range of T is the column space of A.
- c) 1, 2, 4, and 5. The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^m , not \mathbb{R}^n . Any null space, eigenspace, perp space, or span is a subspace.
- **d)** 3. In this situation, *A* is diagonalizable if and only if the 3-eigenspace is a plane. For example, the matrix

$$\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 is not diagonalizable, but
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 is.

e) 3. For any subspace W of \mathbb{R}^4 , we have $\dim W + \dim W^{\perp} = 4$.

Short answer questions: you need not explain your answers.

a) What is the area of the triangle in \mathbb{R}^2 with vertices (1,1), (5,6), and (6,7)?

b) Let A be an $n \times n$ matrix. Write the definition of an eigenvector and an eigenvalue of A.

c) Let W be a plane through the origin in \mathbb{R}^3 . What are the eigenvalues of the matrix for proj_W ?

d) Give an example of a 2×2 matrix that is neither diagonalizable nor invertible.

e) Find a formula for A^n , where

$$A = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}^{-1}.$$

Your answer should be a single matrix whose entries depend on n.

Solution.

- a) Two sides of this triangle are the vectors $v_1 = \binom{5}{6} \binom{1}{1} = \binom{4}{5}$ and $v_2 = \binom{6}{7} \binom{1}{1} = \binom{5}{6}$. The area of the parallelogram spanned by v_1 and v_2 is the absolute value of $\det \binom{4}{5} \binom{5}{6} = -1$. The triangle has half this area, namely, $\frac{1}{2}$.
- **b)** An eigenvector of *A* is a nonzero vector v in \mathbf{R}^n such that $Av = \lambda v$, for some λ in \mathbf{R} . An eigenvalue of *A* is a number λ in \mathbf{R} such that the equation $Av = \lambda v$ has a nontrivial solution.
- **c)** An orthogonal projection always has eigenvalues 0 and 1. The 1-eigenspace is W, and the 0-eigenspace is W^{\perp} .
- d) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

e)
$$A^{n} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}^{n} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n} & (-1)^{n+1}2 \\ 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n} & 2^{n+1} + (-1)^{n+1}2 \\ 0 & (-1)^{n} \end{pmatrix}$$

Problem 4.

The following diagram describes the traffic around the town square in terms of the number of cars per minute on each street. All streets are one-way streets, indicated by the arrows. The dots indicate intersections.

- a) [4 points] Write a system of linear equations in x, y, z, w whose solution gives the number of cars per minute on each of the streets in the square.
- **b)** [4 points] Convert your system of linear equations into an augmented matrix and solve for x, y, z, w.
- **c)** [2 points] In (b), you should have found infinitely many solutions. What feature of this traffic arrangement allows for such a phenomenon?

Solution.

a) The number of cars coming into each intersection must equal the number of cars leaving. This gives rise to the system of equations

$$\begin{cases} w = 10 + x \\ 10 + x = y \\ 10 + y = z \\ z = 10 + w \end{cases} \implies \begin{cases} -x + w = 10 \\ x - y = -10 \\ y - z = -10 \\ z - w = 10. \end{cases}$$

$$\mathbf{b)} \begin{pmatrix} -1 & 0 & 0 & 1 & 10 \\ 1 & -1 & 0 & 0 & -10 \\ 0 & 1 & -1 & 0 & -10 \\ 0 & 0 & 1 & -1 & 10 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & 0 & -1 & -10 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 10 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

This means x = w - 10, y = w, z = w + 10, and w is free.

c) There is a cycle around the town square. You could (in theory) have arbitrarily many cars just driving around in circles.

Problem 5.

Let *L* be the line x = y in \mathbb{R}^2 .

- a) [3 points] Compute the matrices for $proj_L$ and $proj_{L^{\perp}}$.
- **b)** [3 points] Is proj_{L} or $\operatorname{proj}_{L^{\perp}}$ one-to-one?
- c) [3 points] What is the range of $proj_L \circ proj_{L^{\perp}}$?
- **d)** [1 point] What is $\operatorname{proj}_{L}\binom{2}{1}$?

Solution.

a) The line L is spanned by the vector $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and L^{\perp} is spanned by $w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Therefore

$$\operatorname{proj}_{L}(y) = \frac{y \cdot v}{v \cdot v} v \qquad \operatorname{proj}_{L^{\perp}}(y) = \frac{y \cdot w}{w \cdot w} w.$$

We compute

$$\operatorname{proj}_{L}(e_{1}) = \frac{e_{1} \cdot \nu}{\nu \cdot \nu} \nu = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \operatorname{proj}_{L}(e_{2}) = \frac{e_{2} \cdot \nu}{\nu \cdot \nu} \nu = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\operatorname{proj}_{L^{\perp}}(e_{1}) = \frac{e_{1} \cdot w}{w \cdot w} w = -\frac{1}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \operatorname{proj}_{L^{\perp}}(e_{2}) = \frac{e_{2} \cdot w}{w \cdot w} w = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Therefore, the matrices for proj_L and $\operatorname{proj}_{L^\perp}$ are, respectively,

$$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

- **b)** Neither is one-to-one. Every vector in L^{\perp} maps to zero under proj_{L} , and every vector in L maps to zero under $\operatorname{proj}_{L^{\perp}}$.
- **c)** Projecting onto L^{\perp} and then onto L sends everything to the zero vector, since anything in L^{\perp} projects onto the zero vector under proj_L . Therefore, the range of $\operatorname{proj}_{L^{\perp}} \operatorname{oproj}_{L^{\perp}}$ is $\{0\}$.
- **d)** $\operatorname{proj}_{L} \binom{2}{1} = \frac{\binom{2}{1} \cdot \nu}{\nu \cdot \nu} \nu = \frac{3}{2} \binom{1}{1}.$

Problem 6.

Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) [3 points] Find the eigenvalues of *A* along with their algebraic multiplicities.
- **b)** [3 points] For each eigenvalue of *A*, find a basis for the corresponding eigenspace.
- c) [3 points] Is A diagonalizable? If so, exhibit an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. If not, explain why.
- **d)** [1 point] Is A the matrix for the orthogonal projection onto a subspace of \mathbb{R}^3 ? Why or why not?

Solution.

a) Expanding along the third row, we compute the characteristic polynomial:

$$f(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 1 & 1\\ 1 & 1 - \lambda & 1\\ 0 & 0 & -\lambda \end{pmatrix}$$
$$= -\lambda \left[(1 - \lambda)^2 - 1 \right] = -\lambda \left(1 - 2\lambda + \lambda^2 - 1 \right) = -\lambda^2 (\lambda - 2).$$

The eigenvalues are 0 and 2, with respective multiplicities 2 and 1.

b) The 0-eigenspace is the null space of *A*, which we compute:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{constable}} \begin{cases} x = -y - z \\ y = y \\ z = z \end{cases} \xrightarrow{\text{constable}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Thus a basis for the 0-eigenspace is

$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}.$$

Next we compute a basis for the 2-eigenspace, which is Nul(A-2I):

$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{vers}} \begin{cases} x = y \\ y = y \\ z = 0 \end{cases} \xrightarrow{\text{vers}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Thus a basis for the 2-eigenspace is

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}.$$

c) There are three linearly independent eigenvectors, so $A = PDP^{-1}$ with

$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

d) No, an orthogonal projection has eigenvalues 0 and 1.

Problem 7.

Consider the matrix

$$A = \begin{pmatrix} -2 & 5 \\ -2 & 4 \end{pmatrix}.$$

- a) [2 points] Find the (complex) eigenvalues of A.
- **b)** [2 points] For each eigenvalue, find an eigenvector.
- c) [2 points] Find a rotation-scaling matrix C that is similar to A.
- **d)** [1 point] How much does *C* scale?
- **e)** [1 point] How much does *C* rotate?
- f) [2 points] Draw a picture of how iterated applications of A acts on the plane.

Solution.

a) The characteristic polynomial is

$$f(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A) = \lambda^2 - 2\lambda + 2.$$

Using the quadratic formula, we find

$$\lambda = \frac{2 \pm \sqrt{4 - 8}}{2} = 1 \pm i.$$

b) First we compute an element of Nul(A-(1-i)I):

$$A - (1 - i)I = \begin{pmatrix} -3 + i & 5 \\ \star & \star \end{pmatrix}.$$

The second row is a multiple of the first, so an eigenvector is $v = {5 \choose 3-i}$. Hence an eigenvector for 1+i is $\overline{v} = {5 \choose 3+i}$.

c) If $\lambda = 1 - i$, then we can take

$$C = \begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

- **d)** C scales by $|\lambda| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$.
- e) *C* rotates by the argument of $\overline{\lambda} = 1 + i$:

Argument of $\overline{\lambda}$ is $\frac{\pi}{4}$.

f) Multiplication by C rotates counterclockwise by $\pi/4$ around a circle, and scales by $\sqrt{2}$. Multiplication by A does the same, but with respect to the basis

$$\left\{ \operatorname{Re}(v), \operatorname{Im}(v) \right\} = \left\{ \begin{pmatrix} 5 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\},$$

where $v = \binom{5}{3-i}$ is an eigenvector with eigenvalue λ . Hence repeated applications of *A* "spirals out clockwise" around an ellipse:

Problem 8. [5 points each]

Consider the matrix

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 0 & 4 \\ 0 & 1 & 2 \end{pmatrix}.$$

- a) Find an orthogonal basis for ColA.
- **b)** Find a *QR* factorization of *A*.

Solution.

a) Let

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$

be the columns of A. We will perform Gram–Schmidt on $\{v_1, v_2, v_3\}$. Let

$$\begin{split} u_1 &= v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \\ u_2 &= v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} \, u_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \\ u_3 &= v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} \, u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} \, u_2 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} - \frac{6}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{0}{3} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}. \end{split}$$

An orthogonal basis for Col A is

$$\left\{u_1, u_2, u_3\right\} = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\2 \end{pmatrix} \right\}.$$

(Actually, $ColA = \mathbb{R}^3$, so the standard basis e_1, e_2, e_2 is also an orthogonal basis of ColA. However, we still need to do Gram–Schmidt for part (b).)

b) Solving for v_1, v_2, v_3 in terms of u_1, u_2, u_3 above, we get

$$v_1 = u_1$$

 $v_2 = 1u_1 + u_2$
 $v_3 = 3u_1 + u_3$

In matrix form,

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence $A = \widehat{Q}\widehat{R}$, where

$$\widehat{Q} = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad \widehat{R} = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We scale the columns of \widehat{Q} to obtain a matrix Q with orthonormal columns, and we scale the rows of \widehat{R} by the opposite factor, to obtain A = QR where

$$Q = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{3} & -1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & 2/\sqrt{6} \end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix} \sqrt{2} & \sqrt{2} & 3\sqrt{2} \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{6} \end{pmatrix}.$$

Problem 9. [5 points each]

In this problem, you will find the best-fit line through the points (0,6), (1,0), and (2,0).

- a) The general equation of a line in \mathbb{R}^2 is y = C + Dx. Write down the system of linear equations in C and D that would be satisfied by a line passing through all three points, then write down the corresponding matrix equation.
- **b)** Solve the least squares problem in (a) for *C* and *D*. Give the equation for the best fit line, and graph it along with the three points.

Solution.

a) If y = C + Dx were satisfied by all three points, then we would have

$$6 = C + D(0)$$

$$0 = C + D(1) \longrightarrow \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}.$$

$$0 = C + D(2)$$

b) The solution to the least squares problem in (a) is the solution to

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \widehat{x} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

Multiplying everything out and putting into an augmented matrix, this is

$$\begin{pmatrix} 3 & 3 & | & 6 \\ 3 & 5 & | & 0 \end{pmatrix} \quad \stackrel{\text{rref}}{\sim} \quad \begin{pmatrix} 1 & 0 & | & 5 \\ 0 & 1 & | & -3 \end{pmatrix}.$$

Thus the least squares solution is (C, D) = (5, -3), so the best fit line is y = 5 - 3x.

Problem 10. [10 points]

Let *A* be a 3×2 matrix with orthogonal columns v_1, v_2 . Explain why the least-squares solution to Ax = b is

$$\begin{pmatrix} \frac{b \cdot \nu_1}{\nu_1 \cdot \nu_1} \\ \frac{b \cdot \nu_2}{\nu_2 \cdot \nu_2} \end{pmatrix}.$$

Solution.

The closest output vector is $\hat{b} = \operatorname{proj}_{\operatorname{Col} A}(b)$. Since $\nu_1 \perp \nu_2$, we can directly compute

$$\widehat{b} = \frac{b \cdot \nu_1}{\nu_1 \cdot \nu_1} \, \nu_1 + \frac{b \cdot \nu_2}{\nu_2 \cdot \nu_2} \, \nu_2 = A \begin{pmatrix} \frac{b \cdot \nu_1}{\nu_1 \cdot \nu_1} \\ \frac{b \cdot \nu_2}{\nu_2 \cdot \nu_2} \end{pmatrix}.$$

But $\hat{b} = A\hat{x}$, so we must have

$$\widehat{x} = \begin{pmatrix} \frac{b \cdot v_1}{v_1 \cdot v_1} \\ \frac{b \cdot v_2}{v_2 \cdot v_2} \end{pmatrix}.$$

[Scratch work]

[Scratch work]