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Let’s start by thinking about the relationship between invertibility and volumes. If we
have a matrix A, we can look at the parallelepiped determined by the rows of A:

This has some n–dimensional volume. Let’s call that the volume of A. What can we do
with this? We have the following idea:

A is invertible if and only if the volume of A is nonzero.

This is not hard to believe: the volume is zero exactly when the parallelepiped is flat, and
this happens exactly when the rows are linearly dependent, and we already know that is
equivalent to invertibility. You can really see this in the case when A is a 2×2 matrix. In
this case the parallelepiped is just a parallelogram, and the area of the parallelogram is
zero exactly when the rows of A are linearly dependent.

So what is a determinant? We’ll see that a determinant is a way of assigning to each
square matrix A a number det(A). Moreover, we’ll see that det(A) is zero exactly when
A is not invertible—just like volume! In fact we will see that the absolute value of the
determinant exactly is the volume of the parallelepiped described above. We’ll also de-
scribe a few different ways of computing the determinant, we’ll use the determinant to
give a formula for the inverse of a matrix, and we’ll see how determinants can be thought
of as stretch factors for linear transformations. That’s a lot to do, so let’s get going.
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1. THE COFACTOR EXPANSION

We are now going to give a formula for computing determinants. This formula is called
the cofactor expansion of the determinant. We are not going to explain right away where
this formula comes from or what it has to do with volume. That will come later.

Our formula for the determinant is going to be recursive, which means that the determi-
nant of an n×n matrix is going to be defined in terms of the determinants of (n−1)×(n−1)
matrices. So as long as there is some small n where you know how to compute the de-
terminant of an n× n matrix, you will then be able to compute the determinants of all
larger matrices.

Let’s start with 1× 1 matrices. Again, the idea of a determinant is to assign a real num-
ber to every matrix. Well, a 1 × 1 matrix already is a real number. So in this case the
determinant is given by the formula:

det(a11) = a11.

To state our first formula for the determinant of an n × n matrix we need some more
notation. Let A be an n× n matrix and denote the i jth entry of A by ai j. The i jth minor
of A is the (n− 1)× (n− 1) matrix Ai j obtained from A by deleting the ith row and the
jth column. Our first formula for the determinant of A is as follows:

det A=
n
∑

j=1

(−1)1+ ja1 j det A1 j.

If we write this out, it is:

det A= a11 det A11 − a12 det A12 + a13 det A13 − · · ·+ (−1)n+1a1n det A1n.

Let’s try this formula out, first for 2× 2 matrices. Say that

A= det
�

a11 a12
a21 a22

�

.

Since n= 2 we have
det A= a11 det A11 − a12 det A12.

We can see that A11 = (a22) and A12 = (a21) and so

det A= a11a22 − a12a21.

But that is the formula for the determinant of a 2 × 2 matrix that we already learned.
And we already saw that A is invertible exactly when this number is nonzero. This is a
good sign!

Let’s write down the formula for 3× 3 matrices. Say that

A=

 

a11 a12 a13
a21 a22 a23
a31 a32 a33

!



Applying our formula directly we see that

det A= a11 det A11 − a12 det A12 + a13 det A13

= a11 det
�

a22 a23
a32 a33

�

− a12 det
�

a21 a23
a31 a33

�

+ a13 det
�

a21 a22
a31 a32

�

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

A trick for 3× 3 matrices. We can rearrange the formula for the determinant of a 3× 3
matrix as follows:

det A= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32.

The first term is the product of the diagonal entries. The second term is the product of
the three terms to the right of the diagonal. For this to make sense, we think of a31 as
being to the right of a33 (think about the old-fashioned video games where a character
moving off of the right-hand side of the screen reappears on the left). And the third term
is the product of the three terms to the left of the diagonal. Similarly, the fourth term is
the negation of the product of the three terms on the anti-diagonal, etc.

We won’t write down the formula for n× n matrices with n > 3, but hopefully you are
convinced that you could write it down if you wanted to.

Cofactors and other formulas for the determinant. The i jth cofactor of a matrix A is:

Ci j = (−1)i+ j det Ai j.

With this notation, we can rewrite the above formula for det A in the following nice form:

det A=
n
∑

j=1

a1 jC1 j.

This is called the cofactor expansion of det A across the first row of A, since the a1 j en-
tries are exactly the entries in the first row of A. It turns out that we can compute the
determinant by doing a similar cofactor expansion across any row:

det A=
n
∑

j=1

ai jCi j for any fixed i.

And what is more we can do analogous cofactor expansions down any column of A as
well:

det A=
n
∑

i=1

ai jCi j for any fixed j.

So there are 2n different formulas for det A! You should check that the 6 cofactor expan-
sions for the determinant of the above 3× 3 matrix all give the same formula.

Now that we have all of these formulas for the determinant, we want to answer some
questions:

• Where do the formulas come from?



• Why do they all give the same number?
• What does the determinant mean?

2. DETERMINANTS AND ROW OPERATIONS

The next step might seem out of the blue. Let’s say that a determinant is a function

det : {square matrices} → R

that satisfies four properties:

(1) if we perform a row replacement then det does not change
(2) if we perform a row swap then det changes by a factor of −1
(3) if we scale a row by k then det changes by a factor of k
(4) det(In) = 1

Why would we do this? We are trying to mimic the idea of volume. Ignoring the second
item for a moment, the first, third, and fourth properties exactly correspond to our vol-
ume. Indeed if we have a parallelepiped and scale one edge by a factor of k, the volume
also scales by k. To see this, think of computing the volume of the parallelepiped as base
times height, where the base is determined by the n− 1 vectors that we are not scaling
and the height is given by the vector that we are scaling. When we scale this vector by
k we scale the height, hence the volume, by k. (Again, think about the 2–dimensional
case.)

Similarly, if we do a row replacement the volume doesn’t change. Why? Again think
of the volume of the parallelepiped as base times height where the base is given by the
vectors not being replaced and the height is given by the vector being replaced. When
we do the row replacement, the height vector moves parallel to the base, so the height
does not change. The base obviously does not change, and so as a result the volume does
not change. (Again, think about the 2–dimensional case.)

The condition det(In) = 1 is a way of calibrating our volume. We can think of this as
saying that the volume of the unit cube is 1, which is of course what we want.

The second condition above is a little more subtle. It basically means that this function
det (if it exists at all) should be thought of as a signed volume, not a volume. You saw
signed areas in Calculus, and this is not so different. If you have a parallelogram, and the
first and second row vectors are roughly arranged like the x- and y-axes, then we have
positive area. If they are arranged in the other order, we will say that the parallelogram
has negative area.

Existence and uniqueness. Here is the first theorem about determinants.

Theorem 1. There is a function

det : {square matrices} → R



with the 4 properties listed above, and in fact there is only one such function.

Because of this theorem we are justified in referring to det as the determinant.

Theorem 1 is our main theorem about determinants—without it we would have nothing!
We will prove it at the end of these notes. For now, let us just assume it is true.

Basic fact about the determinant. Assuming Theorem 1, how do we compute determi-
nants? This does not seem so easy. For instance, what is the area of the parallelogram
determined by (7,11) and (−1,5). This is not so obvious!

We’ll build up a method for computing determinants in steps. First we have a couple of
preliminary steps.

Fact 0. A square matrix with a zero row has determinant zero.

Let’s see this by example. Say that

A= det
�

3 0
0 0

�

.

Using the third property of determinants, we have:

2 · det A= 2 · det
�

3 0
0 0

�

= det
�

3 0
2 · 0 2 · 0

�

= det
�

3 0
0 0

�

= det A.

So
2 · det A= det A.

It follows that det A= 0, just like we wanted.

We have one more preliminary step. This next fact embodies the idea that we started
with at the very beginning.

Fact 1. A square matrix is invertible if and only if its determinant is nonzero.

First suppose A is invertible. We know from the Invertible Matrix Theorem that A is
row equivalent to the identity. Combining the first three properties of the determinant,
we see that any sequence of row operations taking A to the identity matrix I will scale
the determinant by a nonzero number. Since I has determinant 1, it follows that A has
nonzero determinant.

If A is not invertible, then it is row equivalent to a matrix B with a zero row. By Fact 0,
det B = 0. Again, since the sequence of row operations taking A to B scales the determi-
nant by a nonzero number, we must have that det A= 0. That proves Fact 1!

Diagonal matrices and triangular matrices. Now let’s move on to diagonal matrices.

Fact 2. The determinant of a diagonal matrix is the product of the diagonal
entries.



Let A be a diagonal matrix. First suppose that one of the diagonal entries of A is zero.
This means that A has a zero row. And so by Fact 0, det A = 0. But the product of the
diagonal entries is also zero, so this proves Fact 2 in this case.

Now suppose that A is a diagonal matrix and that all of its diagonal entries are nonzero.
To get from A to I by row operations, we just need to divide each row of A by whatever
entry we see on the diagonal in that row. Fact 2 then follows from the third and fourth
parts of the definition of the determinant.

For example:

det
�

3 0
0 2

�

= 3 · det
�

1 0
0 2

�

= 6 · det
�

1 0
0 1

�

= 6 · 1= 6.

Now let’s deal with triangular matrices.

Fact 3. The determinant of an upper (or lower) triangular matrix is the product of the
diagonal entries.

Let A be an upper triangular matrix. If one of the diagonal entries of A is zero then A is
not invertible (it will have a column without a pivot). By Fact 1, we have det(A) is equal
to zero, which is exactly the product of the diagonal entries of A.

So let’s now assume that all of the diagonal entries of A are nonzero. There is a sequence
of row replacements that takes A to a diagonal matrix D that has the same diagonal entries
as A. Row replacements do not affect the determinant, and so det(A) = det(D). By Fact
1, det(D) is equal to the product of the diagonal entries of D, which are nothing other
than the diagonal entries of A. Since det(A) = det(D), this does it. Here is an example:

det

 

3 2 1
0 2 1
0 0 1

!

= det

 

3 0 1
0 2 1
0 0 1

!

= det

 

3 0 0
0 2 0
0 0 1

!

= 6.

Computing the determinant of any square matrix. We now have a method for computing
the determinant of any square matrix: we just row reduce the matrix and keep track of
any row scaling we do along the way. Here is an example:

det

 

1 2 3
2 −1 1
3 0 −1

!

= det

 

1 2 3
0 −5 −5
0 −6 −10

!

= −5 det

 

1 2 3
0 1 1
0 −6 −10

!

= −5det

 

1 2 3
0 1 1
0 0 −4

!

= −5(1 · 1 · −4) = 20.

The first step in the example is a pair of row replacements (which doesn’t change the
determinant), the second step is a row scaling (that’s where we pick up the factor of



−5), and the third step is another row replacement (which again doesn’t change the
determinant). At the end we have an upper triangular matrix, and by Fact 3 we know its
determinant is the product of the diagonal entries. That does it.

It is always possible to row reduce a matrix without scaling any rows along the way. If
we only do row replacement and row swaps, then the determinant of the row reduced
matrix, which is just the product of the diagonal entries, is equal to plus or minus the
determinant of the original matrix. More precisely:

Fact 4. If we row reduce a matrix without row scaling then the determinant
of the original matrix is

(−1)swaps(product of diagonal entries of REF).

Let’s do this for a general 2× 2 matrix: For example:

det
�

a b
c d

�

=
1
a
· det

�

a b
ac ad

�

=
1
a
· det

�

a b
0 ad − bc

�

=
1
a
· a · (ad − bc)

= ad − bc.

This is exactly the formula we expected!

Determinants and products. Our next goal is to show the following very important for-
mula.

Theorem 2. If A and B are square matrices then

det(AB) = det(A) · det(B).

We’ll do this in a few steps.

Fact 5. If E is an elementary matrix and B is any matrix then det(EB) = det(E)det(B).

Why is this true? Let’s first suppose that E is an elementary matrix corresponding to row
replacement. Then E is triangular and has only 1’s on the diagonal, and so det(E) = 1.
And so in this case what we are trying to show is det(EB) = det(B). But EB differs from
B by row replacement, so rule 1 of determinants says this is the case. What about the
other two kinds of elementary matrices? The argument is basically the same, so I’ll leave
it to you.

We can now see:

Fact 6. If A is a product of elementary matrices E1 · · · Em then det(A) = det(E1) · · ·det(Em).



To verify this, just apply Fact 5 repeatedly!

But now we can easily prove Theorem 2. Suppose that A is a product of elementary
matrices E1 · · · Em and B is a product of elementary matrices E′1 · · · E

′
n. Well then AB is the

product of elementary matrices E1 · · · EmE′1 · · · E
′
n. So applying Fact 6 twice, we have:

det(AB) = det(E1 · · · EmE′1 · · · E
′
n)

= det(E1) · · ·det(Em)det(E′1) · · ·det(E′n)
= det(A)det(B).

3. CRAMER’S RULE AND INVERSES

You might remember that there is a formula for the inverse of a 2× 2 matrix that uses
the determinant:

�

a b
c d

�

=
1

ad − bc

�

d −b
−c a

�

And you might wonder if there is an analogue of this formula for n× n matrices when
n ≥ 3. It turns out there is. Here is how it goes. Say that A is an n × n matrix. The
cofactor matrix of A is the n×n matrix (Ci j) whose i j-entry is the i jth cofactor of A. Then
the formula is:

Theorem 3. If A is an n× n matrix with nonzero determinant, then

A−1 =
1

det A
(Ci j)

T .

We can expand this out as:

A−1 =
1

det A





C11 · · · Cn1
...

. . .
...

C1n · · · Cnn



 .

Let’s do a sanity check. The cofactor matrix for the matrix
�

a b
c d

�

is just
�

d −c
−b a

�

and the transpose of the cofactor matrix is then
�

d −b
−c a

�

If we divide this by the determinant ad − bc we get the usual formula for the inverse of
a 2× 2 matrix!



Theorem 3 is not the fastest way to compute the inverse of a matrix, whether you are
doing it by hand or by computer. To find the cofactor matrix you have to compute n2

determinants. Our old method was row reduction, which is pretty fast. The main point
is that it is an elegant formula and that it generalizes what we already knew for 2 × 2
matrices.

Let’s explain why Theorem 3 is true. First, we need the following.

Fact 7 (Cramer’s rule). Suppose that x = (x1, . . . , xn) is the solution to Ax = b where A is
an invertible n×n matrix. Let Ai be the matrix obtained from A by replacing the ith column
of A by b. Then

x i =
det Ai

det A
.

Here is a nifty proof of Cramer’s rule. The normal way to solve Ax = b is to row reduce
the augmented matrix (A|b). Let’s just check that the quotient (det Ai)/(det A) never
changes when we do a row operation on (A|b). If we do a row replacement then neither
the numerator nor the denominator change, so the quotient doesn’t change. If we scale
a row, then both change by the same factor, so the quotient doesn’t change. And if we
swap two rows then both change by a factor of −1 so again the quotient doesn’t change.
Since A is invertible it is row equivalent to the identity, so it now remains to check that
Cramer’s rule holds when A is the identity. But that’s pretty easy to do, so that does it!

How can we use Cramer’s rule to verify Theorem 3? We want to find the inverse of A.
Let’s be modest and just try to find the jth column c j of A−1. The vector c j is the solution
to

Ac j = e j

where e j is the jth standard basis vector for Rn (can you see why?). Now let’s be even
more modest and just try to find the ith entry of c j, in other words the i jth entry of A−1.
By Cramer’s rule this is

det Ai

det A
where Ai is the matrix obtained from A by replacing the ith column by e j. You can check
that det Ai is exactly C ji. For instance if

A=

 

7 2 1
0 3 −1
−3 4 −2

!

and j = 3 and i = 2 then

Ai =

 

7 0 1
0 0 −1
−3 1 −2

!

.

Expanding down the third column (the one we replaced), we see that the determinant of
this matrix is −1(7 · −1− 1 · 0). Not only is this the cofactor C32 of A, but the calculation



you do to find this determinant is exactly the same as the calculation you do to find the
cofactor!

So in summary the i jth entry of A−1 is exactly C ji/(det A), just like Theorem 3 says.

4. DETERMINANTS, VOLUMES, AND LINEAR TRANSFORMATIONS

Our first task is to make good on our promise at the beginning that determinants should
have something to do with volumes. You can readily think of examples of matrices that
have negative determinants, and volumes usually aren’t negative, so we first need to
wrestle with that.

You’ve seen the idea of negative area and volume in Calculus. For instance, when you
integrate sin(x) from 0 to π, you get 0, because there are two regions enclosed by sin(x)
and the x–axis, one of positive area (above the x–axis) and one of negative area (below
the x–axis). So we say that the integral computes signed area. Let’s import this idea into
linear algebra. Say that we have an ordered list of two vectors v, w. We can use v and w
to make a parallelogram in the usual way. At the origin, the vectors v and w make two
angles, one greater than or equal to π and one less than or equal to π. The parallelogram
that lives in the part that is less than or equal to π. We will say that the parallelogram
has positive area if within the parallelogram w is counterclockwise from v near the origin
and it has negative area otherwise:

+

v

w

w

v

Here is another way to say it that is maybe more important: the area is positive if v
and w are configured just like the x– and y–axes in R2 (in that order) and the area is
negative otherwise. Look back at the picture to make sense of this. It turns out that you
can generalize this idea to Rn: if you have a list of n length n vectors v1, . . . , vn, then those
vectors span what is called a parallelepiped in Rn, and in a similar way we can say that
the volume of this parallelepiped is positive or negative depending on whether v1, . . . , vn
is configured like e1, . . . , en or not. For n= 3, this is the same as the right-hand rule: the
area of the parallelepiped spanned by v1, v2, v3 is positive if when you stick your pointer
finger on your right hand along v1 and your middle finger along v2, your thumb sticks
along v3 (check that this works for e1, e2, e3).



Fact 8. If A is an n× n matrix has rows v1, . . . , vn (in order) then the signed volume of the
parallelepiped spanned by v1, . . . , vn is det A.

Why is this true? Well, all you have to do is convince yourself that signed volume sat-
isfies the four properties of a determinant function. Once you’ve done that then you
can apply Theorem 1, which says that there is only one determinant function. And so
the signed volume function and the determinant function must be one and the same!
Property 1 works since row replacement changes neither the base nor the height of the
parallelepiped (thinking of the replaced row as giving the height). Property 2 is the
trickiest, but our picture above clearly shows when n = 2 that swapping rows negates
the signed volume. Property 3 is true because if you scale a row then, thinking of that
row as being the one giving the height of the parallelepiped, the base doesn’t change,
but the height gets scaled by the same amount you scaled the row. And Property 4 is the
easiest: the parallelepiped spanned by the standard basis vectors for Rn is the standard
unit cube and hence has signed volume one (the volume is positive because the standard
basis vectors are obviously configured like the standard basis vectors).

That’s that. Now suppose that TA : Rn → Rn is the linear transformation associated to
an invertible n× n matrix A. We think of TA as some operation that you do to Rn. We’ve
seen examples of this before, for instance when TA is a reflection, a projection, a rotation,
a stretch or a shear. Of course, in general, TA can be some complicated combination of
these.

So what can we say about what TA does to Rn? Well, we know that TA takes the standard
basis vectors e1, . . . , en to the columns of A. It follows that the standard cube spanned
by e1, . . . , en gets taken to the parallelepiped spanned by the columns of A. What is the
volume of this parallelepiped? Well, since det A= det AT (can you see why?), the volume
of the parallelepiped is det Aby Fact 8. In summary, TA changes the volume of the standard
cube by det A. Now we know something about what TA does.

Actually, we know more. If we take the cube εe1, . . . ,εen where ε is a small real number
(wait, are we doing Calculus now?), then since TA is linear, the image of this cube—which
has signed volume εn—will have signed volume det Aεn. What does that buy us? Well
now take any shape S in Rn that has finite volume. Fill it as best you can with ε-cubes.
The total volume of the ε-cubes is approximately volume(S). Now apply TA. What is the
volume of TA(S)? We just said that each of the little cubes gets its volume stretched by
det A. Since that’s true, all of S gets its volume stretched by det A. If we don’t want to
think about signed volume, and just want to worry about volume, then we can take the
absolute value of det A and conclude the following fact.

Fact 9. If TA is the linear transformation of Rn associated to an n× n matrix A and S is a
region in Rn, then

volume(TA(S)) = |det A|volume(S).



5. LINEARITY AND THE PROOF OF EXISTENCE AND UNIQUENESS OF DETERMINANTS

At long last we need to prove Theorem 1, which says that determinant functions exist and
are unique. We also want to prove our cofactor formula for computing the determinant.
We’ll do both of these at the same time!

Here’s where we pay the piper a little bit. If the rows of a matrix are v1, . . . , vn, let’s write
the matrix as (v1, . . . , vn). We need to show that

Fact 7. Any determinant function det is linear in each row, that is:

det(v1 +w, . . . , vn) = det(v1, . . . , vn) + det(w, v2, . . . , vn)

For the sake of argument, let’s assume that A is invertible so that the vi span Rn. We want
to show that det(v1+w, . . . , vn) is equal to det(v1, . . . , vn) + det(w, v2, . . . , vn). Why is this
true? Since the vi span (in fact form a basis for) Rn, we can write w uniquely as cv1+w′

where w′ is in the span of v2, . . . , vn. So

det(v1 +w, . . . , vn) = det(v1 + cv1 +w′, v2, . . . , vn)

But by doing row operations we can get rid of the w′!

det(v1 + cv1 +w′, v2, . . . , vn) = det(v1 + cv1, v2, . . . , vn) = det((c + 1)v1, v2, . . . , vn)

But by the scaling rule this is

(c + 1)det(v1, . . . , vn) = det(v1, . . . , vn) + c det(v1, . . . , vn)

But since w′ is a linear combination of v2, . . . , vn we can use the same argument as before
to show that c det(v1, . . . , vn) is det(w, v2, . . . , vn) (again use row operations to kill the w′).
This exactly gives what we want!

Once we have this we can derive the cofactor formula for the determinant. Say v1 =
c1e1 + · · · cnen. (Note that the c j are just a1 j.) Then by linearity we have that

det(v1, . . . , vn) =
∑

c j det(e j, v2, . . . , vn)

So it remains to find a formula for the latter. The claim is that the latter is equal to the
cofactor Ci j, that is, (−1)1+ j times the determinant of the i jth minor Ai j. This is not too
hard using row swaps and row replacement.

We could have done this for any row. And so we have n formulas:

det(A) =
n
∑

j=1

(−1)i+ jai j det(Ai j) for any fixed i

It is easy to check that these are all the same by using the row swap rule.

If you want a formula for columns, you need to show that det(AT ) = det(A). But this
follows easily from the above facts and the fact that it is true for invertible matrices. So



in this entire discussion you can use columns instead of rows if you want. You therefore
get n formulas for the determinant using columns.

All 2n numbers you get are the same by our reals, and clearly the function det exists
because we just gave a recursive formula for it.
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