1. **a)** Find the standard matrix A for proj_W, where $W = \text{Span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \right\}$.

b) Find the standard matrix B for proj_L, where $L = \text{Span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$.

c) Answer the following questions without doing any calculations:

(1) What are A^2 and B^2?

(2) What are A^{-1} and B^{-1}?

(3) What are AB and BA?

(4) Is A or B diagonalizable?

(5) What are the eigenvalues of A and B? What are their algebraic multiplicities?

(6) Is A similar to B?
2. a) Find the distance from e_1 to $W = \text{Span}\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$.

b) Find the least squares solution \tilde{x} to $Ax = e_1$, where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$.

3. Let $A = \begin{pmatrix} 1 & 6 & 4 \\ -1 & -2 & 20 \\ 1 & 2 & -14 \\ 1 & 6 & 10 \end{pmatrix}$.

a) Find an orthogonal basis for $\text{Col}A$.

b) Find an orthonormal basis for $\text{Col}A$.

c) Find a QR decomposition for A.
4. Consider the four points \((0, 0), (1, 8), (3, 8), \) and \((4, 20)\).
 a) Find the best fit line \(y = Ax + B\) through these points.

 b) Find the best fit parabola \(y = Ax^2 + Bx + C\) through these points.

 c) Find the best fit cubic \(y = Ax^3 + Bx^2 + Cx + D\) through these points.