Math 1553 Worksheet 11

Solutions

1. a) Find the standard matrix A for proj_{W}, where $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)\right\}$.
b) Find the standard matrix B for proj_{L}, where $L=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$.
c) Answer the following questions without doing any calculations:
(1) What are A^{2} and B^{2} ?
(2) What are A^{-1} and B^{-1} ?
(3) What are $A B$ and $B A$?
(4) Is A or B diagonalizable?
(5) What are the eigenvalues of A and B ? What are their algebraic multiplicities?
(6) Is A similar to B ?

Solution.

a) The columns of A are $\operatorname{proj}_{W}\left(e_{1}\right), \operatorname{proj}_{W}\left(e_{2}\right)$, and $\operatorname{proj}_{W}\left(e_{3}\right)$. Noting that

$$
u_{1}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \quad \text { and } \quad u_{2}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

are orthogonal, we compute

$$
\begin{aligned}
\operatorname{proj}_{W}\left(e_{1}\right) & =\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)+\frac{3}{14}\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)=\frac{1}{42}\left(\begin{array}{c}
41 \\
5 \\
4
\end{array}\right) \\
\operatorname{proj}_{W}\left(e_{2}\right) & =\frac{e_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{2} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)-\frac{1}{14}\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)=\frac{1}{42}\left(\begin{array}{c}
5 \\
17 \\
-20
\end{array}\right) \\
\operatorname{proj}_{W}\left(e_{3}\right) & =\frac{e_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=-\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)+\frac{2}{14}\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)=\frac{1}{42}\left(\begin{array}{c}
4 \\
-20 \\
26
\end{array}\right) \\
\Longrightarrow A & =\frac{1}{42}\left(\begin{array}{ccc}
41 & 5 & 4 \\
5 & 17 & -20 \\
4 & -20 & 26
\end{array}\right) .
\end{aligned}
$$

b) The columns of B are $\operatorname{proj}_{L}\left(e_{1}\right), \operatorname{proj}_{L}\left(e_{2}\right)$, and $\operatorname{proj}_{L}\left(e_{3}\right)$. Letting $u=(1,1,-1)$, we compute

$$
\begin{gathered}
\operatorname{proj}_{L}\left(e_{1}\right)=\frac{e_{1} \cdot u}{u \cdot u} u=\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\operatorname{proj}_{L}\left(e_{2}\right)=\frac{e_{2} \cdot u}{u \cdot u} u=\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\operatorname{proj}_{L}\left(e_{3}\right)=\frac{e_{3} \cdot u}{u \cdot u} u=-\frac{1}{3}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\Longrightarrow B
\end{gathered} \begin{aligned}
& \frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

c) (1) Projecting twice is the same as projecting once, so $\operatorname{proj}_{W} \circ \operatorname{proj}_{W}=\operatorname{proj}_{W}$, and hence $A^{2}=A$. The same holds for proj_{L} and B.
(2) Neither matrix is invertible: the null space of A is W^{\perp}, which is a line (because $\operatorname{dim} W+\operatorname{dim} W^{\perp}=3$), and the null space of B is L^{\perp}, which is a plane.
(3) $A B=B=B A$. Since L is contained in W, if you project first onto W and then onto L, it is the same as projecting onto L. Likewise, if you project first onto L and then onto W, it is the same as projecting onto L.
(4) Both are diagonalizable. The 1-eigenspace of proj_{W} is W, and the 0 eigenspace is W^{\perp}. If $\left\{u_{3}\right\}$ is a basis for W^{\perp}, then $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis of eigenvectors of A. Similarly, the 1-eigenspace of proj_{L} is L, and the 0 -eigenspace is L^{\perp}. If $\left\{v_{2}, v_{3}\right\}$ is a basis of L^{\perp}, then $\left\{u, v_{2}, v_{3}\right\}$ is a basis of eigenvectors of B.
(5) The 1-eigenspace of A has dimension 2 , and the 0 -eigenspace has dimension 1 . Since these sum to 3 , and since the geometric multiplicity is at most the algebric multiplicity, we must have equality: 1 has multiplicity 2 , and 0 has multiplicity 1 . There can be no other eigenvalues. Similarly, 1 is an eigenvalue of B of multiplicity 1 , and 0 is an eigenvalue with multiplicity 2.
(6) The matrices are not similar. If they were, they would have the same characteristic polynomial, hence the same eigenvalues with the same multiplicities.
2. a) Find the distance from e_{1} to $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.
b) Find the least squares solution \hat{x} to $A x=e_{1}$, where $A=\left(\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -1 & 1\end{array}\right)$.

Solution.

a) The closest point to e_{1} on W is $\widehat{e}_{1}=\operatorname{proj}_{W}\left(e_{1}\right)$. Noting that

$$
u_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \quad \text { and } \quad u_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

are orthogonal, we compute

$$
\widehat{e}_{1}=\operatorname{proj}_{W}\left(e_{1}\right)=\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right)
$$

The distance to e_{1} is

$$
\left\|\widehat{e}_{1}-e_{1}\right\|=\left\|\frac{1}{6}\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right)\right\|=\frac{1}{6} \sqrt{(-1)^{2}+2^{2}+(-1)^{2}}=\frac{1}{\sqrt{6}}
$$

b) Method 1: We need to solve the equation $A \widehat{x}=\widehat{e}_{1}$. We already know \widehat{e}_{1}, so we simply form the augmented matrix

$$
\left(\begin{array}{rr|r}
1 & 1 & 5 / 6 \\
0 & 1 & 1 / 3 \\
-1 & 1 & -1 / 6
\end{array}\right) \underset{ }{\text { rref }}\left(\begin{array}{rr|r}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 3 \\
0 & 0 & 0
\end{array}\right) \Longrightarrow \widehat{x}=\binom{1 / 2}{1 / 3} .
$$

Method 2: We need to solve the equation $A^{T} A \widehat{x}=A^{T} e_{1}$. We compute:

$$
\begin{aligned}
A^{T} A & =\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \\
A^{T} e_{1} & =\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right) e_{1}=\binom{1}{1} .
\end{aligned}
$$

Now we form the augmented matrix:

$$
\left(\begin{array}{ll|l}
2 & 0 & 1 \\
0 & 3 & 1
\end{array}\right) \stackrel{\text { rref }}{\text { mn }}\left(\begin{array}{ll|l}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 3
\end{array}\right) \Longrightarrow \widehat{x}=\binom{1 / 2}{1 / 3} .
$$

Method 3: We showed in (a) that

$$
\widehat{e}_{1}=\frac{1}{2} u_{1}+\frac{1}{3} u_{2}=A \widehat{x} .
$$

If $\widehat{x}=\binom{c_{1}}{c_{2}}$ then $A \widehat{x}=c_{1} u_{1}+c_{2} u_{2}$ (because u_{1}, u_{2} are the columns of A), so $c_{1}=1 / 2$ and $c_{2}=1 / 3$, and hence

$$
\widehat{x}=\binom{1 / 2}{1 / 3}=\binom{e_{1} \cdot u_{1} / u_{1} \cdot u_{1}}{e_{1} \cdot u_{2} / u_{2} \cdot u_{2}} .
$$

3. Let $A=\left(\begin{array}{rrr}1 & 6 & 4 \\ -1 & -2 & 20 \\ 1 & 2 & -14 \\ 1 & 6 & 10\end{array}\right)$.
a) Find an orthogonal basis for $\operatorname{Col} A$.
b) Find an orthonormal basis for $\operatorname{Col} A$.
c) Find a $Q R$ decomposition for A.

Solution.

Let $v_{1}=\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right), \quad v_{2}=\left(\begin{array}{r}6 \\ -2 \\ 2 \\ 6\end{array}\right), \quad v_{3}=\left(\begin{array}{r}4 \\ 20 \\ -14 \\ 10\end{array}\right)$.
a) We apply Gram-Schmidt to $\left\{v_{1}, v_{2}, v_{3}\right\}$:

$$
\begin{aligned}
& u_{1}=v_{1} \\
& u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left(\begin{array}{r}
6 \\
-2 \\
2 \\
6
\end{array}\right)-\frac{16}{4}\left(\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{r}
2 \\
2 \\
-2 \\
2
\end{array}\right) \\
& u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left(\begin{array}{r}
4 \\
20 \\
-14 \\
10
\end{array}\right)+\frac{20}{4}\left(\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right)-\frac{96}{16}\left(\begin{array}{r}
2 \\
2 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
-3 \\
3 \\
3 \\
3
\end{array}\right) .
\end{aligned}
$$

The vectors $\left\{u_{1}, u_{2}, u_{3}\right\}$ are an orthogonal basis for $\operatorname{Col} A$.
b) An orthonormal basis is

$$
\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \frac{u_{2}}{\left\|u_{2}\right\|}, \frac{u_{3}}{\left\|u_{3}\right\|}\right\}=\left\{\frac{1}{2}\left(\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right), \frac{1}{2}\left(\begin{array}{r}
1 \\
1 \\
-1 \\
1
\end{array}\right), \frac{1}{2}\left(\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right)\right\} .
$$

c) Solving for v_{1}, v_{2}, v_{3} in terms of u_{1}, u_{2}, u_{3} in (a) gives
$\begin{aligned} & v_{1}=1 u_{1} \\ & v_{2}=4 u_{1}+1 u_{2} \\ & v_{3}=-5 u_{1}+6 u_{2}+1 u_{3}\end{aligned} \quad \Longrightarrow A=\left(\begin{array}{ccc}\mid & \mid & \mid \\ v_{1} & v_{2} & v_{3} \\ \mid & \mid & \mid\end{array}\right)=\left(\begin{array}{ccc}\mid & \mid & \mid \\ u_{1} & u_{2} & u_{3} \\ \mid & \mid & \mid\end{array}\right)\left(\begin{array}{ccc}1 & 4 & -5 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right)$

Dividing the columns of the first matrix by the lengths of the u_{i} 's, and multiplying the rows of the second by the same factors, gives $A=Q R$ where

$$
Q=\frac{1}{2}\left(\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{rrr}
2 & 8 & -10 \\
0 & 4 & 24 \\
0 & 0 & 6
\end{array}\right)
$$

4. Consider the four points $(0,0),(1,8),(3,8)$, and $(4,20)$.
a) Find the best fit line $y=A x+B$ through these points.
b) Find the best fit parabola $y=A x^{2}+B x+C$ through these points.
c) Find the best fit cubic $y=A x^{3}+B x^{2}+C x+D$ through these points.

Solution.

a) We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A(0)+B \\
8 & =A(1)+B \\
8 & =A(3)+B \\
20 & =A(4)+B
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{A}{B}=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

We compute

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
26 & 8 \\
8 & 4
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\binom{112}{36} \\
& \left(\begin{array}{rr|r}
26 & 8 & 112 \\
8 & 4 & 36
\end{array}\right) \underset{\text { mimus }}{\text { rref }}\left(\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Hence the least squares solution is $A=4$ and $B=1$, so the best fit line is $y=4 x+1$.
b) We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A\left(0^{2}\right)+B(0)+C \\
8 & =A\left(1^{2}\right)+B(1)+C \\
8 & =A\left(3^{2}\right)+B(3)+C \\
20 & =A\left(4^{2}\right)+B(4)+C
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

We compute

$$
\begin{aligned}
\left(\begin{array}{llll}
0 & 1 & 9 & 16 \\
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1
\end{array}\right)= & \left(\begin{array}{ccc}
338 & 92 & 26 \\
92 & 26 & 8 \\
26 & 8 & 4
\end{array}\right) \\
& \left(\begin{array}{rrrr}
0 & 1 & 9 & 16 \\
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\left(\begin{array}{c}
400 \\
112 \\
36
\end{array}\right) \\
& \left(\begin{array}{rrr|r}
338 & 92 & 26 & 400 \\
92 & 26 & 8 & 112 \\
26 & 8 & 4 & 36
\end{array}\right) \xrightarrow[\text { rref }]{\text { rrim }\left(\begin{array}{lll|r}
1 & 0 & 0 & 2 / 3 \\
0 & 1 & 0 & 4 / 3 \\
0 & 0 & 1 & 2
\end{array}\right)} .
\end{aligned}
$$

Hence the least squares solution is $A=2 / 3, B=4 / 3$, and $C=2$, so the best fit quadratic is $y=\frac{2}{3} x^{2}+\frac{4}{3} x+2$.
c) We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A\left(0^{3}\right)+B\left(0^{2}\right)+C(0)+D \\
8 & =A\left(1^{3}\right)+B\left(1^{2}\right)+C(1)+D \\
8 & =A\left(3^{3}\right)+B\left(3^{2}\right)+C(3)+D \\
20 & =A\left(4^{3}\right)+B\left(4^{2}\right)+C(4)+D
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
27 & 9 & 3 & 1 \\
64 & 16 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right)=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

The columns of this matrix are actually linearly independent, so the column space is all of \mathbf{R}^{4}, and therefore there is an exact solution:

$$
\left(\begin{array}{rrrr|r}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 8 \\
27 & 9 & 3 & 1 & 8 \\
64 & 16 & 4 & 1 & 20
\end{array}\right) \underset{\text { mmm }}{\operatorname{rref}}\left(\begin{array}{llll|r}
1 & 0 & 0 & 0 & 5 / 3 \\
0 & 1 & 0 & 0 & -28 / 3 \\
0 & 0 & 1 & 0 & 47 / 3 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

Hence the cubic $y=\frac{5}{3} x^{3}-\frac{28}{3} x^{2}+\frac{47}{3} x$ actually passes through all four points.
There is a picture on the next page.

