
Math 1553 Worksheet 11

Solutions

1. a) Find the standard matrix A for projW , where W = Span

( 

1
1
−1

!

,

 

3
−1
2

!)

.

b) Find the standard matrix B for projL, where L = Span

( 

1
1
−1

!)

.

c) Answer the following questions without doing any calculations:

(1) What are A2 and B2?

(2) What are A−1 and B−1?

(3) What are AB and BA?

(4) Is A or B diagonalizable?

(5) What are the eigenvalues of A and B? What are their algebraic multi-
plicities?

(6) Is A similar to B?

Solution.

a) The columns of A are projW (e1), projW (e2), and projW (e3). Noting that

u1 =

 

1
1
−1

!

and u2 =

 

3
−1
2

!

are orthogonal, we compute

projW (e1) =
e1 · u1

u1 · u1
u1 +

e1 · u2

u2 · u2
u2 =

1
3

 

1
1
−1

!

+
3

14

 

3
−1
2

!

=
1

42

 

41
5
4

!

projW (e2) =
e2 · u1

u1 · u1
u1 +

e2 · u2

u2 · u2
u2 =

1
3

 

1
1
−1

!

−
1

14

 

3
−1
2

!

=
1

42

 

5
17
−20

!

projW (e3) =
e3 · u1

u1 · u1
u1 +

e3 · u2

u2 · u2
u2 = −

1
3

 

1
1
−1

!

+
2

14

 

3
−1
2

!

=
1

42

 

4
−20
26

!

=⇒ A=
1

42

 

41 5 4
5 17 −20
4 −20 26

!

.

1



2 SOLUTIONS

b) The columns of B are projL(e1), projL(e2), and projL(e3). Letting u= (1,1,−1),
we compute

projL(e1) =
e1 · u
u · u

u=
1
3

 

1
1
−1

!

projL(e2) =
e2 · u
u · u

u=
1
3

 

1
1
−1

!

projL(e3) =
e3 · u
u · u

u= −
1
3

 

1
1
−1

!

=⇒ B =
1
3

 

1 1 −1
1 1 −1
−1 −1 1

!

.

c) (1) Projecting twice is the same as projecting once, so projW ◦projW = projW ,
and hence A2 = A. The same holds for projL and B.

(2) Neither matrix is invertible: the null space of A is W⊥, which is a line
(because dim W + dim W⊥ = 3), and the null space of B is L⊥, which is
a plane.

(3) AB = B = BA. Since L is contained in W , if you project first onto W and
then onto L, it is the same as projecting onto L. Likewise, if you project
first onto L and then onto W , it is the same as projecting onto L.

(4) Both are diagonalizable. The 1-eigenspace of projW is W , and the 0-
eigenspace is W⊥. If {u3} is a basis for W⊥, then {u1, u2, u3} is a basis
of eigenvectors of A. Similarly, the 1-eigenspace of projL is L, and the
0-eigenspace is L⊥. If {v2, v3} is a basis of L⊥, then {u, v2, v3} is a basis
of eigenvectors of B.

(5) The 1-eigenspace of A has dimension 2, and the 0-eigenspace has dimen-
sion 1. Since these sum to 3, and since the geometric multiplicity is at
most the algebric multiplicity, we must have equality: 1 has multiplicity
2, and 0 has multiplicity 1. There can be no other eigenvalues. Sim-
ilarly, 1 is an eigenvalue of B of multiplicity 1, and 0 is an eigenvalue
with multiplicity 2.

(6) The matrices are not similar. If they were, they would have the same
characteristic polynomial, hence the same eigenvalues with the same
multiplicities.
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2. a) Find the distance from e1 to W = Span

( 

1
0
−1

!

,

 

1
1
1

!)

.

b) Find the least squares solution bx to Ax = e1, where A=

 

1 1
0 1
−1 1

!

.

Solution.

a) The closest point to e1 on W is be1 = projW (e1). Noting that

u1 =

 

1
0
−1

!

and u2 =

 

1
1
1

!

are orthogonal, we compute

be1 = projW (e1) =
e1 · u1

u1 · u1
u1 +

e1 · u2

u2 · u2
u2 =

1
2

 

1
0
−1

!

+
1
3

 

1
1
1

!

=
1
6

 

5
2
−1

!

.

The distance to e1 is





be1 − e1



=













1
6

 −1
2
−1

!













=
1
6

Æ

(−1)2 + 22 + (−1)2 =
1
p

6
.

b) Method 1: We need to solve the equation Abx = be1. We already know be1, so we
simply form the augmented matrix

 

1 1 5/6
0 1 1/3
−1 1 −1/6

!

rref
 

1 0 1/2
0 1 1/3
0 0 0

!

=⇒ bx =
�

1/2
1/3

�

.

Method 2: We need to solve the equation AT Abx = AT e1. We compute:

AT A=
�

1 0 −1
1 1 1

�

 

1 1
0 1
−1 1

!

=
�

2 0
0 3

�

AT e1 =
�

1 0 −1
1 1 1

�

e1 =
�

1
1

�

.

Now we form the augmented matrix:

�

2 0 1
0 3 1

� rref �

1 0 1/2
0 1 1/3

�

=⇒ bx =
�

1/2
1/3

�

.

Method 3: We showed in (a) that

be1 =
1
2

u1 +
1
3

u2 = Abx .



4 SOLUTIONS

If bx =
�c1

c2

�

then Abx = c1u1 + c2u2 (because u1, u2 are the columns of A), so
c1 = 1/2 and c2 = 1/3, and hence

bx =
�

1/2
1/3

�

=
�

e1 · u1/u1 · u1
e1 · u2/u2 · u2

�

.

3. Let A=







1 6 4
−1 −2 20

1 2 −14
1 6 10






.

a) Find an orthogonal basis for Col A.

b) Find an orthonormal basis for Col A.

c) Find a QR decomposition for A.

Solution.

Let v1 =







1
−1

1
1






, v2 =







6
−2

2
6






, v3 =







4
20
−14

10






.

a) We apply Gram–Schmidt to {v1, v2, v3}:

u1 = v1

u2 = v2 −
v2 · u1

u1 · u1
u1 =







6
−2

2
6






−

16
4







1
−1

1
1






=







2
2
−2

2







u3 = v3 −
v3 · u1

u1 · u1
u1 −

v3 · u2

u2 · u2
u2 =







4
20
−14

10






+

20
4







1
−1

1
1






−

96
16







2
2
−2

2






=







−3
3
3
3






.

The vectors {u1, u2, u3} are an orthogonal basis for Col A.

b) An orthonormal basis is

§

u1

‖u1‖
,

u2

‖u2‖
,

u3

‖u3‖

ª

=











1
2







1
−1

1
1






,

1
2







1
1
−1

1






,

1
2







−1
1
1
1

















.

c) Solving for v1, v2, v3 in terms of u1, u2, u3 in (a) gives

v1 = 1u1

v2 = 4u1 + 1u2

v3 = −5u1 + 6u2 + 1u3

=⇒ A=

 | | |
v1 v2 v3
| | |

!

=

 | | |
u1 u2 u3
| | |

! 

1 4 −5
0 1 6
0 0 1

!
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Dividing the columns of the first matrix by the lengths of the ui ’s, and multi-
plying the rows of the second by the same factors, gives A=QR where

Q =
1
2







1 1 −1
−1 1 1

1 −1 1
1 1 1






and R=

 

2 8 −10
0 4 24
0 0 6

!

.

4. Consider the four points (0, 0), (1,8), (3,8), and (4,20).
a) Find the best fit line y = Ax + B through these points.

b) Find the best fit parabola y = Ax2 + Bx + C through these points.

c) Find the best fit cubic y = Ax3 + Bx2 + C x + D through these points.

Solution.

a) We want to find a least squares solution to the system of linear equations

0 = A(0) + B
8 = A(1) + B
8 = A(3) + B

20 = A(4) + B

⇐⇒







0 1
1 1
3 1
4 1







�

A
B

�

=







0
8
8

20






.

We compute

�

0 1 3 4
1 1 1 1

�







0 1
1 1
3 1
4 1






=
�

26 8
8 4

�

�

0 1 3 4
1 1 1 1

�







0
8
8

20






=
�

112
36

�

�

26 8 112
8 4 36

� rref �

1 0 4
0 1 1

�

.

Hence the least squares solution is A = 4 and B = 1, so the best fit line is
y = 4x + 1.

b) We want to find a least squares solution to the system of linear equations

0 = A(02) + B(0) + C
8 = A(12) + B(1) + C
8 = A(32) + B(3) + C

20 = A(42) + B(4) + C

⇐⇒







0 0 1
1 1 1
9 3 1
16 4 1







 

A
B
C

!

=







0
8
8

20






.



6 SOLUTIONS

We compute

 

0 1 9 16
0 1 3 4
1 1 1 1

!







0 0 1
1 1 1
9 3 1

16 4 1






=

 

338 92 26
92 26 8
26 8 4

!

 

0 1 9 16
0 1 3 4
1 1 1 1

!







0
8
8

20






=

 

400
112
36

!

 

338 92 26 400
92 26 8 112
26 8 4 36

!

rref
 

1 0 0 2/3
0 1 0 4/3
0 0 1 2

!

.

Hence the least squares solution is A = 2/3, B = 4/3, and C = 2, so the best
fit quadratic is y = 2

3 x2 + 4
3 x + 2.

c) We want to find a least squares solution to the system of linear equations

0 = A(03) + B(02) + C(0) + D
8 = A(13) + B(12) + C(1) + D
8 = A(33) + B(32) + C(3) + D

20 = A(43) + B(42) + C(4) + D

⇐⇒







0 0 0 1
1 1 1 1

27 9 3 1
64 16 4 1













A
B
C
D






=







0
8
8
20






.

The columns of this matrix are actually linearly independent, so the column
space is all of R4, and therefore there is an exact solution:







0 0 0 1 0
1 1 1 1 8

27 9 3 1 8
64 16 4 1 20







rref







1 0 0 0 5/3
0 1 0 0 −28/3
0 0 1 0 47/3
0 0 0 1 0






.

Hence the cubic y = 5
3 x3 − 28

3 x2 + 47
3 x actually passes through all four points.

There is a picture on the next page.
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y = 4x + 1
y = 2

3 x2 + 4
3 x + 2

y = 5
3 x3 − 28

3 x2 + 47
3 x


