
Announcements
November 30

I Please fill out the CIOS form online.
I It is important for me to get responses from most of the class: I use these

for preparing future iterations of this course.
I If we get an 80% response rate before the final, I’ll drop the two lowest quiz

grades instead of one.

I WeBWorK assignments 6.1, 6.2, 6.3 are due on Friday at 6am.
I WeBWorK assignments 6.4 and 6.5 will post on Friday, but they are only

for practice—the scores do not count.

I There is no quiz on Friday, but this will be the only opportunity to discuss
chapter 6 in recitation.

I Soon I will post details about the final exam, a practice final, extra office
hours, etc.

I Office hours: today 1–2pm, tomorrow 3:30–4:30pm, and by appointment,
in Skiles 221.

I As always, TAs’ office hours are posted on the website.
I Math Lab is also a good place to visit.



Section 6.5

Least Squares Problems



Motivation

We now are in a position to solve the motivating problem of this third part of
the course:

Suppose that Ax = b does not have a solution. What is
the best possible approximate solution?

Problem

To say Ax = b does not have a solution means that b is not in ColA.

The closest possible b̂ for which Ax = b̂ does have a solution is b̂ = projCol A(b).

Then Ax̂ = b̂ is a consistent equation.

A solution x̂ to Ax̂ = b̂ is a least squares solution.



Least Squares Solutions

Let A be an m × n matrix.

Definition
A least squares solution to Ax = b is a vector x̂ in Rn such that

‖b − Ax̂‖ ≤ ‖b − Ax‖

for all x in Rn.

ColA

Ax

Ax

Ax

Ax̂ = projCol A(b)

b

b − Ax̂
Note that b − Ax̂

is in (ColA)⊥.

In other words, a least squares solution x̂ solves Ax = b as closely as possible.

Equivalently, a least squares solution to Ax = b is a vector x̂ in Rn such that

Ax̂ = b̂ = projCol A(b).

This is because b̂ is the closest vector to b such that Ax̂ = b̂ is consistent.



Least Squares Solutions
Computation

Theorem
The least squares solutions to Ax = b are the solutions to

(ATA)x̂ = ATb.

This is just another Ax = b problem! Note we compute x̂ directly, without
computing b̂ first.

Why is this true?

I We want to find x̂ such that Ax̂ = projCol A(b).

I This means b − Ax̂ is in (ColA)⊥.

I Recall that (ColA)⊥ = Nul(AT ).

I So b − Ax̂ is in (ColA)⊥ if and only if AT (b − Ax̂) = 0.

I In other words, ATAx̂ = ATb.

Alternative when A has orthogonal columns v1, v2, . . . , vn:

b̂ = projCol A(b) =
n∑

i=1

b · vi
vi · vi

vi

The right hand side equals Ax̂ , where x̂ =

(
b · v1

v1 · v1
,

b · v2

v2 · v2
, · · · , b · vn

vn · vn

)
.



Least Squares Solutions
Example

Find the least squares solutions to Ax = b where:

A =




1 0
1 1
1 2


 b =




6
0
0


 .

We have

ATA =

(
1 1 1
0 1 2

)


1 0
1 1
1 2


 =

(
3 3
3 5

)

and

ATb =

(
1 1 1
0 1 2

)


6
0
0


 =

(
6
0

)
.

Row reduce:
(

3 3 6
3 5 0

) (
1 0 5
0 1 −3

)
.

So the only least squares solution is x̂ =

(
5
−3

)
.



Least Squares Solutions
Example, continued

How close did we get?

b̂ = Ax̂ =




1 0
1 1
1 2



(

5
−3

)
=




5
2
−1




The distance from b is
∥∥∥∥∥∥




6
0
0


−




5
2
−1



∥∥∥∥∥∥

=

∥∥∥∥∥∥




1
−2
1



∥∥∥∥∥∥

=
√

12 + (−2)2 + 12 =
√

6.

x

y

z

ColA




1
1
1







0
1
2




√
6

b̂ = A

(
5
−3

)

b



Least Squares Solutions
Second example

Find the least squares solutions to Ax = b where:

A =




2 0
−1 1

0 2


 b =




1
0
−1


 .

We have

ATA =

(
2 −1 0
0 1 2

)


2 0
−1 1

0 2


 =

(
5 −1
−1 5

)

and

ATb =

(
2 −1 0
0 1 2

)


1
0
−1


 =

(
2
−2

)
.

Row reduce:
(

5 −1 2
−1 5 −2

) (
1 0 1/3
0 1 −1/3

)
.

So the only least squares solution is x̂ =

(
1/3
−1/3

)
.



Least Squares Solutions
Uniqueness

When does Ax = b have a unique least squares solution x̂?

Theorem
Let A be an m × n matrix. The following are equivalent:

1. Ax = b has a unique least squares solution for all b in Rn.

2. The columns of A are linearly independent.

3. ATA is invertible.

In this case, the least squares solution is (ATA)−1(ATb).

Why?

I Ax = b has a unique least squares solution if and only if (ATA)x̂ = ATb
has a unique solution, if and only if ATA is invertible (by the invertible
matrix theorem, since ATA is a square matrix).

I A least squares solution is a solution to the consistent equation
Ax̂ = b̂ = projCol A(b). This is unique if and only if the columns of A are
linearly independent.



Application
Data modeling: best fit line

Find the best fit line through (0, 6), (1, 0), and (2, 0).

The general equation of a line is

y = C + Dx .

So we want to solve:

6 = C + D · 0
0 = C + D · 1
0 = C + D · 2.

In matrix form:



1 0
1 1
1 2



(
C
D

)
=




6
0
0


 .

We already saw: the least squares solution is(
5
−3

)
. So the best fit line is

y = −3x + 5.

(0, 6)

(1, 0)

(2, 0)

1

−2

1

y
=

−
3x

+
5

A

(
5
−3

)
−




6
0
0


 =




1
−2
1






What does the best fit line minimize?
A. The sum of the squares of the distances from the

data points to the line.

B. The sum of the squares of the vertical distances
from the data points to the line.

C. The sum of the squares of the horizontal distances
from the data points to the line.

D. The maximal distance from the data points to the
line.

Poll

Answer: B. See the picture on the previous slide.



Application
Best fit ellipse

Find the best fit ellipse for the points (0, 2), (2, 1), (1,−1), (−1,−2), (−3, 1).

The general equation for an ellipse is

x2 + Ay 2 + Bxy + Cx + Dy + E = 0

So we want to solve:

(0)2 + A(2)2 + B(0)(2) + C(0) + D(2) + E = 0

(2)2 + A(1)2 + B(2)(1) + C(2) + D(1) + E = 0

(1)2 + A(−1)2 + B(1)(−1) + C(1) + D(−1) + E = 0

(−1)2 + A(−2)2 + B(−1)(−2) + C(−1) + D(−2) + E = 0

(−3)2 + A(1)2 + B(−3)(1) + C(−3) + D(1) + E = 0

In matrix form:



4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1







A
B
C
D
E




=




0
−4
−1
−1
−9




.



Application
Best fit ellipse, continued

A =




4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1


 b =




0
−4
−1
−1
−9


 .

ATA =




35 6 −4 1 11
6 18 10 −4 0

−4 10 15 0 −1
1 −4 0 11 1

11 0 −1 1 5


 ATb =




−18
18
19

−10
−15




Row reduce:



35 6 −4 1 11 −18
6 18 10 −4 0 18

−4 10 15 0 −1 19
1 −4 0 11 1 −10

11 0 −1 1 5 −15







1 0 0 0 0 16/7
0 1 0 0 0 −8/7
0 0 1 0 0 15/7
0 0 0 1 0 −6/7
0 0 0 0 1 −52/7




Best fit ellipse:

x2 +
16

7
y 2 − 8

7
xy +

15

7
x − 6

7
y − 52

7
= 0

or
7x2 + 16y 2 − 8xy + 15x − 6y − 52 = 0.



Application
Best fit ellipse, picture

(0, 2)

(2, 1)

(1,−1)

(−1,−2)

(−3, 1)

7x2 + 16y 2 − 8xy + 15x − 6y − 52 = 0

Remark: Gauss invented the method of least squares to predict the orbit of the
asteroid Ceres (an ellipse) as it passed behind the sun in 1801.



Application
Best fit parabola

What least squares problem Ax = b finds the best parabola through the points
(−1, 0.5), (1,−1), (2,−0.5), (3, 2)?

The general equation for a parabola is

y = Ax2 + Bx + C .

So we want to solve:

0.5 = A(−1)2 + B(−1) + C

−1 = A(1)2 + B(1) + C

−0.5 = A(2)2 + B(2) + C

2 = A(3)2 + B(3) + C

In matrix form: 


1 −1 1
1 1 1
4 2 1
9 3 1






A
B
C


 =




0.5
−1
−0.5

2


 .

Answer: 88y = 53x2 − 379

5
x − 82



Application
Best fit parabola, picture

(−1, 0.5)

(1,−1)
(2,−0.5)

(3, 2)

88y = 53x2 − 379

5
x − 82



Application
Best fit linear function

What least squares problem Ax = b finds the best
linear function f (x , y) fitting the following data?

The general equation for a linear function in two
variables is

f (x , y) = Ax + By + C .

x y f (x , y)
1 0 0
0 1 1
−1 0 3

0 −1 4

So we want to solve
A(1) + B(0) + C = 0

A(0) + B(1) + C = 1

A(−1) + B(0) + C = 3

A(0) + B(−1) + C = 4

In matrix form: 


1 0 1
0 1 1
−1 0 1

0 −1 1






A
B
C


 =




0
1
3
4


 .

Answer: f (x , y) = −3

2
x − 3

2
y + 2



Application
Best fit linear function, picture

x

y

f (x , y)
Graph of

f (x , y) = −3

2
x − 3

2
y + 2

f (1, 0)

(1, 0, 0)f (0, 1)

(0, 1, 1)

f (−1, 0)

(−1, 0, 3)

f (0,−1)

(0,−1, 4)


