Announcements
November 28

v

Please fill out the CIOS form online.
> It is important for me to get responses from most of the class: | use these
for preparing future iterations of this course.
> |If we get an 80% response rate before the final, I'll drop the two lowest quiz
grades instead of one.

» The written assignment is due today in class.

> Please hand it in before you leave.
> Make one pile for each section.

v

WeBWorK assignments 6.1, 6.2, 6.3 are due on Friday at 6am.

v

Office hours: Wednesday 1-2pm, Thursday 3:30-4:30pm, and by
appointment, in Skiles 221.

> As always, TAs' office hours are posted on the website.
> Math Lab is also a good place to visit.



Section 6.4

The Gram-Schmidt Process



Motivation

All of the procedures we learned in §§6.2—6.3 required an orthogonal basis
{ur,uzy ..., Um}.
» Finding the B-coordinates of a vector x using dot products:

m
X - Uj
X = E uj
- ui - uj
i=1

I

» Finding the orthogonal projection of a vector x onto the span W of
uy, u2,...,Un:

ui - u

m
) X - Uj
projy (x) = » - Ui
i=1 !

Problem: what if your basis isn't orthogonal?

Solution: the Gram—Schmidt process: take any basis and make it orthogonal.



The Gram—=Schmidt Process
Two vectors
Find an orthogonal basis {u1, u2} for W = Span{vi, v»}, where

1 1
vi= 11 and w=1[1
0 1

First we take u; = vi. Now we're sad because v - v» # 0, so we can't take
tp, = v». How to fix: let Ly = Span{u1}, and let

2 = ("2)L1L = v2 — proj, (v2)

Vo - Uy w
=V, — — U1
u - u
N o, [1 0 ~ uz = (va)
=(1]-5(t] =10 —
1 0 1 ! L

By construction, u; - u» = 0, because

u L L.

Important: Span{ui, u»} = Span{vi, v»} = W: this is an orthogonal basis for
the same subspace.



The Gram—Schmidt Process

Three vectors

Find an orthogonal basis {u1, u2, us} for W = Span{vi, v2, vs} = R®, where

1 1 3
v = 1 Vo = 1 V3 = 1
0 1 1

We know how to make the first two vectors orthogonal:

1 0
m=v=|1 Uz = v — projy, (v2) = [ 0
0 1

where Wy = Span{v1} (called L; in the previous slide). How do we modify vs
to make it orthogonal to u; and w,? Same trick: let W> = Span{ui, u}.

V3 - u V3 - u2
2 =

us = (vs)w = vs — Projy, (vs) = vs — R wnowm
3 1 0 1
1 0 1 0



The Gram—Schmidt Process

Three vectors, continued

1 1 3\ G-S 1 0
vi=[1],vw=|1]l,vvs=[1] wwwuyy=|1],w=|0], =
0 1 1 0 1

Important: Span{ui, 2, us} = Span{vi, vo, vs} = W: this is an orthogonal
basis for the same subspace.

W>




The Gram—Schmidt Process

General procedure

The Gram—-Schmidt Process

Let {vi,v2,...,Vm} be a basis for a subspace W of R". Define:
1. u =wv
2. ur = v» — proj (v2) - 2iy,
Sl =V — 2 =v— 1
Span{u } 0
3. u3 = vz — proj (v3) vy B, By,
.Uz =v3— 3 =v;— 1— 2
Span{ui,up } UL - Uo - U
m—1
. Vm - Uj
m. Um = Vm — proJSpan{ul,uz,...,um,l}(V’") = Vm — § Ui - U ui
1 1

i=1
Then {u1, tz,...,um} is an orthogonal basis for the same subspace W.



The Gram—Schmidt Process

Example

Find an orthogonal basis {u1, u2, us} for W = Span{vi, v2, v3}, where

1 -1 4
Vi = 1 Vo = 4 V3 = -2
1 4 -2
1 -1 0
1 u =w
-1 1 —5/2
2 U2:V2_V2.UI 1= oot 5/2
U - 4 411 5/2
-1 1 —5/2
3. s =vs— u V3 - U2
up-tn uz - U2
4 1 —5/2 2
-2 0|1 —-20 5/2 o 0
-2 241 25 52— o
0 1 —5/2 -2



QR Factorization

QR Factorization
Let A be a matrix with linearly independent columns. Then

A= QR

where @ has orthonormal columns and R is upper-triangular with positive
diagonal entries.

Recall: a set of vectors {vi1, v»,...,vn} is orthonormal if they are orthogonal
unit vectors: v; - vj = 0 when i # j, and v; - v; = 1.

Check: a matrix @ has orthonormal columns if and only if QTQ=1.
The columns of A are a basis for W = Col A. The columns of @ come from

Gram—Schmidt as applied to the columns of A, after normalizing to unit
vectors. The columns of R come from the steps in Gram—Schmidt.

This is much better understood by example.



QR Factorization

Example

1 1 0
Find the QR factorizationof A= |1 1 1
0 1 1

The columns of A are the vectors vi, v», v3 from a previous example.

Step 1: Run Gram-Schmidt and solve for vi, v2, v3 in terms of w1, w2, us.

1
u = vy = 1 Vi = u
0
Vo - u 0
2 - Ul
U = Vo — m=wvw—1uu=10 Vo = U1+ W
uy - u
1
V3 - U V3 - u2
us = v3 — ur — uz
up - u - U2
1
=wv—2u—1w=|-1 v3 =2u; + U + u3

0



QR Factorization

Example, continued

vi =L vo =Qur +Du, vs = +DQuz +Dus
Step 2: write A :\§R,\where Qh rthogonal columns w1, up, U3 and R is
upper-triangular with ls\ohﬂ@giago al

Do this by putting the above equafigh\s {n-matrix-for

[ N Y
A— Vi V2 w3 | = | w1 U us

D
T 0o
o A"

[ 1
first column= | v1 w u3 0]l =1ltu=wn
[ 0
[ 1
second column= | 11 w u3 1l =1lnn+1lw=w
[ 0
[ 2
third column= | ur1 w w3 1l =21+l +1us =w3
[ 1




QR Factorization

Example, continued

. 110 10 1\ /1 1 2
A=QR 11 1|=(10 -1]f0 11
01 1 o1 0o/\o 01

Step 3: Scale the columns of Q to get unit vectors, and scale the rows of R by
the opposite factor, to get @ and R.

110 1/vV2 0/1  1/V2 1-v2 1-v2 2.2
1 1 1|=1{1/v2 0/1 -1/V2 0-1 1-1 1-1
0 11 0/v2 1/1  0/vV2) \0-vV2 0-v2 1-V2

Note that the entries in the ith column of @ multiply by the entries in the ith
row of R, so this doesn't change the product.

The final QR decomposition is:

1/V2 0 12 V2 V2 2V2
A= QR Q=11/vV2 0 -1/V2 R= 0o 1 1
0 1 0 0 0 V2



QR Factorization

Another example

1 -1 4

. . 1 4 =2
Find the QR factorization of A = 1 a4 _o
1 -1 0

The columns are vectors from a previous example.

Step 1: Run Gram—-Schmidt and solve for vi, vz, v3 in terms of ui, uo, us:

1
u =v = 1 Vi=u
1
1
—5/2
U2=V2—V2.UIU1=V2—§U1= 5/2 V2=§U1+U2
uy - up 2 5/2 2
—5/2

V3 - ul V3 - U2
U — —=

4 4
U =Vv3s+ —lp = V3:—§U2+U3

uy - uy up - uz 5

fory
N
N OON



QR Factorization

Another example, continued

3 4
vi=1uw V2:§U1+1U2 V3ZOU1*gU2+1U3

Step 2: write A = Q\ﬁ where a has orthogonal columns uy, uo, u3 and Ris
upper-triangular with 1s on the diagonal.

B 1 —5/2 2
~ |1 52 0
Q= u|1 U|2 ula =11 5/2 0
1 —5/2 -2

1 3/2 0



QR Factorization

Another example, continued

1
~~ o~ |1
A= QR Q= 1
1

—5/2
5/2
5/2

-5/2

2
0
0
-2

Step 3: normalize the columns of @ and the rows of R to get Q and R:

|
Q= <U1/IIU1|| ua /||
|
Leflell 3/2-||w
R= 0 1wl
0 0
The final QR decomposition is
1/2 -1/2
_ 1172 1/2
A=QR Q=14 1p
1/2 -1/2

us /|| us]|

0 el
—4/5- |||
L us]l
1/V2

0

0

—1/3/2

>:

12 —1/2
12 1)2
12 1)2
12 —1/2

2 3
=10 5
0 0

1/v2
0
0

,1/\5

0
—4
2v2



QR Factorization
Application

Let A be an n x n matrix. Here is an algorithm:

A= QR
Al = RiQ
= QR
A = R@Q:
= KR;

Theorem

QR factorization

swap the Q and R

find its QR factorization
swap the Q and R

find its QR factorization

et cetera

The matrices Ax converge to an upper triangular matrix, and the diagonal
entries converge (quickly!) to the eigenvalues of A.

So this gives another way to compute eigenvalues — especially with a

computer.



