- Please fill out the CIOS form online.
 - It is important for me to get responses from most of the class: I use these for preparing future iterations of this course.
 - ▶ If we get an 80% response rate before the final, I'll drop the *two* lowest quiz grades instead of one.
- ▶ The written assignment is due today in class.
 - Please hand it in before you leave.
 - Make one pile for each section.
- ▶ WeBWorK assignments 6.1, 6.2, 6.3 are due on Friday at 6am.
- Office hours: Wednesday 1–2pm, Thursday 3:30–4:30pm, and by appointment, in Skiles 221.
 - As always, TAs' office hours are posted on the website.
 - Math Lab is also a good place to visit.

Section 6.4

The Gram-Schmidt Process

Motivation

All of the procedures we learned in §§6.2–6.3 required an *orthogonal* basis $\{u_1,u_2,\ldots,u_m\}$.

▶ Finding the \mathcal{B} -coordinates of a vector x using dot products:

$$x = \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i$$

Finding the orthogonal projection of a vector x onto the span W of u_1, u_2, \ldots, u_m :

$$\operatorname{proj}_W(x) = \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i.$$

Problem: what if your basis isn't orthogonal?

Solution: the Gram-Schmidt process: take any basis and make it orthogonal.

The Gram–Schmidt Process

Find an orthogonal basis $\{u_1, u_2\}$ for $W = \text{Span}\{v_1, v_2\}$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{ and } \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

First we take $u_1=v_1$. Now we're sad because $u_1\cdot v_2\neq 0$, so we can't take $u_2=v_2$. How to fix: let $L_1=\operatorname{Span}\{u_1\}$, and let

$$\begin{split} u_2 &= (v_2)_{L_1^{\perp}} = v_2 - \mathsf{proj}_{L_1}(v_2) \\ &= v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} \, u_1 \\ &= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \end{split}$$

By construction, $u_1 \cdot u_2 = 0$, because $u_2 \perp L_1$.

Important: Span $\{u_1, u_2\} = \text{Span}\{v_1, v_2\} = W$: this is an *orthogonal* basis for the *same* subspace.

The Gram–Schmidt Process

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\} = \mathbb{R}^3$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}.$$

We know how to make the first two vectors orthogonal:

$$u_1=v_1=egin{pmatrix}1\\1\\0\end{pmatrix} \qquad u_2=v_2-\mathsf{proj}_{W_1}(v_2)=egin{pmatrix}0\\0\\1\end{pmatrix}$$

where $W_1 = \operatorname{Span}\{v_1\}$ (called L_1 in the previous slide). How do we modify v_3 to make it orthogonal to u_1 and u_2 ? Same trick: let $W_2 = \operatorname{Span}\{u_1, u_2\}$.

$$u_{3} = (v_{3})_{W_{2}^{\perp}} = v_{3} - \operatorname{proj}_{W_{2}}(v_{3}) = v_{3} - \frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$

$$= \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} - \frac{4}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

The Gram-Schmidt Process

Three vectors, continued

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\mathsf{G-S}} u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Important: Span $\{u_1, u_2, u_3\} = \text{Span}\{v_1, v_2, v_3\} = W$: this is an *orthogonal* basis for the *same* subspace.

The Gram–Schmidt Process General procedure

The Gram-Schmidt Process

Let $\{v_1, v_2, \dots, v_m\}$ be a basis for a subspace W of \mathbf{R}^n . Define:

1.
$$u_{1} = v_{1}$$

2. $u_{2} = v_{2} - \operatorname{proj}_{\mathsf{Span}\{u_{1}\}}(v_{2})$ $= v_{2} - \frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$
3. $u_{3} = v_{3} - \operatorname{proj}_{\mathsf{Span}\{u_{1}, u_{2}\}}(v_{3})$ $= v_{3} - \frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$
 \vdots $m-1$

m.
$$u_m = v_m - \text{proj}_{\text{Span}\{u_1, u_2, ..., u_{m-1}\}}(v_m) = v_m - \sum_{i=1}^{m-1} \frac{v_m \cdot u_i}{u_i \cdot u_i} u_i$$

Then $\{u_1, u_2, \ldots, u_m\}$ is an *orthogonal* basis for the same subspace W.

The Gram–Schmidt Process Example

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\}$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \end{pmatrix}.$$

1.
$$u_1 = v_1$$

2.
$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1\\4\\4\\-1 \end{pmatrix} - \frac{6}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -5/2\\5/2\\5/2\\-5/2 \end{pmatrix}$$

3.
$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \end{pmatrix} - \frac{0}{24} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{-20}{25} \begin{pmatrix} -5/2 \\ 5/2 \\ -5/2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ -2 \end{pmatrix}$$

QR Factorization

Let A be a matrix with linearly independent columns. Then

$$A = QR$$

where ${\it Q}$ has orthonormal columns and ${\it R}$ is upper-triangular with positive diagonal entries.

Recall: a set of vectors $\{v_1, v_2, \dots, v_m\}$ is **orthonormal** if they are orthogonal unit vectors: $v_i \cdot v_i = 0$ when $i \neq j$, and $v_i \cdot v_i = 1$.

Check: a matrix Q has orthonormal columns if and only if $Q^TQ = I$.

The columns of A are a basis for $W = \operatorname{Col} A$. The columns of Q come from Gram–Schmidt as applied to the columns of A, after normalizing to unit vectors. The columns of R come from the steps in Gram–Schmidt.

This is much better understood by example.

Find the
$$QR$$
 factorization of $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

The columns of A are the vectors v_1, v_2, v_3 from a previous example.

Step 1: Run Gram-Schmidt and solve for v_1, v_2, v_3 in terms of u_1, u_2, u_3 .

$$u_{1} = v_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$v_{1} = u_{1}$$

$$u_{2} = v_{2} - \frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} = v_{2} - 1 u_{1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$v_{2} = u_{1} + u_{2}$$

$$u_{3} = v_{3} - \frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$

$$= v_{3} - 2 u_{1} - 1 u_{2} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$v_{3} = 2u_{1} + u_{2} + u_{3}$$

Example, continued

Step 2: write
$$A = \widehat{Q}\widehat{R}$$
, where \widehat{Q} has orthogonal columns $u_1, u_2 + 1u_3$ and \widehat{R} is upper-triangular with 1s on the diagonal.

Do this by putting the above equations in matrix form:

$$A \longrightarrow \begin{pmatrix} | & | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | & | \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

first column =
$$\begin{pmatrix} | & | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | & | \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1u_1 = v_1$$

second column =
$$\begin{pmatrix} | & | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | & | \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1u_1 + 1u_2 = v_2$$

third column =
$$\begin{pmatrix} | & | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | & | \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 2u_1 + 1u_2 + 1u_3 = v_3$$

$$A = \widehat{Q}\widehat{R} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Step 3: Scale the columns of \widehat{Q} to get unit vectors, and scale the rows of \widehat{R} by the opposite factor, to get Q and R.

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 0/1 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0/1 & -1/\sqrt{2} \\ 0/\sqrt{2} & 1/1 & 0/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 \cdot \sqrt{2} & 1 \cdot \sqrt{2} & 2 \cdot \sqrt{2} \\ 0 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 \\ 0 \cdot \sqrt{2} & 0 \cdot \sqrt{2} & 1 \cdot \sqrt{2} \end{pmatrix}.$$

Note that the entries in the ith column of Q multiply by the entries in the ith row of R, so this doesn't change the product.

The final *QR* decomposition is:

$$A = QR \qquad Q = \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \end{pmatrix} \qquad R = \begin{pmatrix} \sqrt{2} & \sqrt{2} & 2\sqrt{2} \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

Another example

Find the *QR* factorization of
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & -2 \\ 1 & -1 & 0 \end{pmatrix}$$
.

The columns are vectors from a previous example.

Step 1: Run Gram-Schmidt and solve for v_1, v_2, v_3 in terms of u_1, u_2, u_3 :

$$u_1 = v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad v_1 = u_1$$

$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = v_2 - \frac{3}{2} u_1 = \begin{pmatrix} -5/2 \\ 5/2 \\ 5/2 \\ -5/2 \end{pmatrix}$$

$$v_2 = \frac{3}{2} u_1 + u_2$$

$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2 = v_3 + \frac{4}{5} u_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ -2 \end{pmatrix} \quad v_3 = -\frac{4}{5} u_2 + u_3$$

Another example, continued

$$v_1 = \frac{1}{2}u_1$$
 $v_2 = \frac{3}{2}u_1 + 1u_2$ $v_3 = 0u_1 - \frac{4}{5}u_2 + 1u_3$

Step 2: write $A = \widehat{Q}\widehat{R}$, where \widehat{Q} has orthogonal columns u_1, u_2, u_3 and \widehat{R} is upper-triangular with 1s on the diagonal.

$$\widehat{Q} = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & -5/2 & 2 \\ 1 & 5/2 & 0 \\ 1 & 5/2 & 0 \\ 1 & -5/2 & -2 \end{pmatrix}$$

$$\widehat{R} = \begin{pmatrix} 1 & 3/2 & 0 \\ 0 & 1 & -4/5 \\ 0 & 0 & 1 \end{pmatrix}$$

Another example, continued

$$A = \widehat{Q}\widehat{R} \qquad \widehat{Q} = \begin{pmatrix} 1 & -5/2 & 2\\ 1 & 5/2 & 0\\ 1 & 5/2 & 0\\ 1 & -5/2 & -2 \end{pmatrix} \qquad \widehat{R} = \begin{pmatrix} 1 & 3/2 & 0\\ 0 & 1 & -4/5\\ 0 & 0 & 1 \end{pmatrix}$$

Step 3: normalize the columns of \widehat{Q} and the rows of \widehat{R} to get Q and R:

$$Q = \begin{pmatrix} | & | & | \\ u_1/\|u_1\| & u_2/\|u_2\| & u_3/\|u_3\| \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 \cdot \|u_1\| & 3/2 \cdot \|u_1\| & 0 \cdot \|u_1\| \\ 1/2 & 0 & 0 & 0 \end{pmatrix}$$

$$R = \begin{pmatrix} 1 \cdot ||u_1|| & 3/2 \cdot ||u_1|| & 0 \cdot ||u_1|| \\ 0 & 1 \cdot ||u_2|| & -4/5 \cdot ||u_2|| \\ 0 & 0 & 1 \cdot ||u_3|| \end{pmatrix} = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 5 & -4 \\ 0 & 0 & 2\sqrt{2} \end{pmatrix}$$

The final QR decomposition is

$$A = QR \qquad Q = \begin{pmatrix} 1/2 & -1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \end{pmatrix} \qquad R = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 5 & -4 \\ 0 & 0 & 2\sqrt{2} \end{pmatrix}.$$

Let A be an $n \times n$ matrix. Here is an algorithm:

$$A=Q_1R_1$$
 QR factorization $A_1=R_1Q_1$ swap the Q and R $=Q_2R_2$ find its QR factorization $A_2=R_2Q_2$ swap the Q and R $=Q_3R_3$ find its QR factorization et cetera

Theorem

The matrices A_k converge to an upper triangular matrix, and the diagonal entries converge (quickly!) to the eigenvalues of A.

So this gives another way to compute eigenvalues — especially with a computer.