Announcements

- Please fill out the CIOS form online.
- It is important for me to get responses from most of the class: I use these for preparing future iterations of this course.
- If we get an 80% response rate before the final, I'll drop the two lowest quiz grades instead of one.
- The written assignment is due the Monday after Thanksgiving.
- See the Piazza post for details.
- The next WeBWorK assignment is due on Friday, December 2, at 6am.
- Office hours: none this week.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Section 6.2

Orthogonal Sets

Best Approximation

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the closest point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W : it is in the orthogonal complement W^{\perp}.

Orthogonal Projection onto a Line

Theorem
Let $L=\operatorname{Span}\{u\}$ be a line in \mathbf{R}^{n}, and let x be in \mathbf{R}^{n}. The closest point to x on L is the point

$$
\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u
$$

This point is called the orthogonal projection of x onto L.

Why? Let $y=\operatorname{proj}_{L}(x)$. We have to verify that $x-y$ is in L^{\perp}. This means proving that $u \cdot(x-y)=0$.

$$
u \cdot(x-y)=u \cdot\left(x-\frac{x \cdot u}{u \cdot u} u\right)=u \cdot x-\frac{x \cdot u}{u \cdot u}(u \cdot u)=u \cdot x-x \cdot u=0 .
$$

Orthogonal Projection onto a Line

Example

Compute the orthogonal projection of $x=\binom{-6}{4}$ onto the line L spanned by

$$
u=\binom{3}{2}
$$

$$
y=\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u=\frac{-18+8}{9+4}\binom{3}{2}=-\frac{10}{13}\binom{3}{2} .
$$

Orthogonal Sets

Definition

A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if, in addition, each vector is a unit vector.

Example: $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$ is an orthogonal set. Check:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=0 \quad\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0 \quad\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0
$$

Lemma

An orthogonal set of vectors is linearly independent.
Suppose $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is orthogonal. We need to show that the equation

$$
c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}=0
$$

has only the trivial solution $c_{1}=c_{2}=\cdots=c_{m}=0$.

$$
0=u_{1} \cdot\left(c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)+0+0+\cdots+0
$$

Hence $c_{1}=0$. Similarly for the other c_{i}.

Orthogonal Bases

An orthogonal set $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ forms a basis for its span W. An advantage of of orthogonal bases is it's very easy to compute the \mathcal{B}-coordinates of a vector in W.

Theorem

Let $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal set, and let x be a vector in $W=\operatorname{Span} \mathcal{B}$. Then

$$
x=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m} .
$$

In other words, the \mathcal{B}-coordinates of x are $\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \ldots, \frac{x \cdot u_{m}}{u_{m} \cdot u_{m}}$.
Why? If $x=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}$, then

$$
x \cdot u_{1}=c_{1}\left(u_{1} \cdot u_{1}\right)+0+\cdots+0 \Longrightarrow c_{1}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} .
$$

Similarly for the other c_{i}.

Orthogonal Bases

Geometric Reason

Theorem

Let $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal set, and let x be a vector in $W=\operatorname{Span} \mathcal{B}$. Then

$$
x=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m} .
$$

If L_{i} is the line spanned by u_{i}, then this says

$$
x=\operatorname{proj}_{L_{1}}(x)+\operatorname{proj}_{L_{2}}(x)+\cdots+\operatorname{proj}_{L_{m}}(x)
$$

Orthogonal Bases

Example

Problem: find the \mathcal{B}-coordinates of $x=\binom{0}{3}$, where

$$
\mathcal{B}=\left\{\binom{1}{2},\binom{-4}{2}\right\} .
$$

Old way:

$$
\left(\begin{array}{rr|r}
1 & -4 & 0 \\
2 & 2 & 3
\end{array}\right) \stackrel{\text { rref }}{\sim m}\left(\begin{array}{ll|r}
1 & 0 & 6 / 5 \\
0 & 1 & 6 / 20
\end{array}\right) \Longrightarrow[x]_{\mathcal{B}}=\binom{6 / 5}{6 / 20} .
$$

New way: note \mathcal{B} is an orthogonal basis.

$$
x=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{3 \cdot 2}{1^{2}+2^{2}} u_{1}+\frac{3 \cdot 2}{(-4)^{2}+2^{2}} u_{2}=\frac{6}{5} u_{1}+\frac{6}{20} u_{2} .
$$

So the \mathcal{B}-coordinates are $\frac{6}{5}, \frac{6}{20}$.

Orthogonal Bases

Example

Problem: find the \mathcal{B}-coordinates of $x=(6,1,-8)$ where

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

Answer:

$$
\begin{aligned}
{[x]_{\mathcal{B}} } & =\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \frac{x \cdot u_{3}}{u_{3} \cdot u_{3}}\right) \\
& =\left(\frac{6 \cdot 1+1 \cdot 1-8 \cdot 1}{1^{2}+1^{2}+1^{2}}, \frac{6 \cdot 1+1 \cdot(-2)-8 \cdot 1}{1^{2}+(-2)^{2}+1^{2}}, \frac{6 \cdot 1+1 \cdot 0+(-8) \cdot(-1)}{1^{2}+0^{2}+(-1)^{2}}\right) \\
& =\left(-\frac{1}{3},-\frac{2}{3}, 7\right) .
\end{aligned}
$$

Check:

$$
\left(\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right)=-\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)+7\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Section 6.3

Orthogonal Projections

Idea Behind Orthogonal Projections

If x is not in a subspace W, then y in W is the closest to x if $x-y$ is in W^{\perp} :

Reformulation: Every vector x can be decompsed uniquely as

$$
x=x_{w}+x_{W \perp}
$$

where $x_{W}=y$ is the closest vector to x in W, and $x_{W \perp}=x-y$ is in W^{\perp}.
Example: Let $u=\binom{3}{2}$ and let $L=\operatorname{Span}\{u\}$. Let $x=\binom{-6}{4}$. Then the closest point to x in L is $\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u$, so

$$
x_{L}=\operatorname{proj}_{L}(x)=-\frac{10}{13}\binom{3}{2} \quad x_{L \perp}=x-\operatorname{proj}_{L}(x)=\binom{-6}{4}+\frac{10}{13}\binom{3}{2}
$$

Orthogonal Projections

Definition

Let W be a subspace of \mathbf{R}^{n}, and let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$
\operatorname{proj}_{w}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} .
$$

Question: What is the difference between this and the formula for $[x]_{\mathcal{B}}$ from before?

Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $\operatorname{proj}_{W}(x)$ is the closest point to x in W. Therefore

$$
x_{W}=\operatorname{proj}_{W}(x) \quad x_{W \perp}=x-\operatorname{proj}_{W}(x)
$$

Why? Let $y=\operatorname{proj}_{W}(x)$. We need to show that $x-y$ is in W^{\perp}. In other words, $u_{i} \cdot(x-y)=0$ for each i. Let's do u_{1} :

$$
u_{1} \cdot(x-y)=u_{1} \cdot\left(x-\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}\right)=u_{1} \cdot x-\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}\left(u_{1} \cdot u_{1}\right)-0-\cdots=0 .
$$

Orthogonal Projections

Easy Example

What is the projection of $x=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ onto the $x y$-plane?
Answer: The $x y$-plane is $W=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$, and $\left\{e_{1}, e_{2}\right\}$ is an orthogonal basis.

$$
x_{W}=\operatorname{proj}_{W}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\frac{x \cdot e_{1}}{e_{1} \cdot e_{1}} e_{1}+\frac{x \cdot e_{2}}{e_{2} \cdot e_{2}} e_{2}=\frac{1 \cdot 1}{1^{2}} e_{1}+\frac{1 \cdot 2}{1^{2}} e_{2}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

So this is the same projection as before.

Orthogonal Projections

More complicated example

What is the projection of $x=\left(\begin{array}{c}-1.1 \\ 1.4 \\ 1.45\end{array}\right)$ onto $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1.1 \\ -.2\end{array}\right)\right\}$?
Answer: The basis is orthogonal, so

$$
\begin{aligned}
x_{W} & =\operatorname{proj}_{W}\left(\begin{array}{c}
-1.1 \\
1.4 \\
1.45
\end{array}\right)=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} \\
& =\frac{(-1.1)(1)}{1^{2}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\frac{(1.4)(1.1)+(1.45)(-.2)}{1.1^{2}+(-.2)^{2}}\left(\begin{array}{c}
0 \\
1.1 \\
-.2
\end{array}\right)
\end{aligned}
$$

This turns out to be equal to $u_{2}-1.1 u_{1}$.

Orthogonal Projections

Picture

Let W be a subspace of \mathbf{R}^{n}, and let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. Let $L_{i}=\operatorname{Span}\left\{u_{i}\right\}$. Then

$$
\operatorname{proj}_{W}(x)=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\sum_{i=1}^{m} \operatorname{proj}_{L_{i}}(x)
$$

So the orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.

Orthogonal Projections

Properties

First we restate the property we've been using all along.

Best Approximation Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $y=\operatorname{proj}_{W}(x)$ is the closest point in W to x, in the sense that

$$
\operatorname{dist}\left(x, y^{\prime}\right) \geq \operatorname{dist}(x, y) \quad \text { for all } \quad y^{\prime} \text { in } W
$$

We can think of orthogonal projection as a transformation:

$$
\operatorname{proj}_{w}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \quad x \mapsto \operatorname{proj}_{w}(x)
$$

Theorem

Let W be a subspace of \mathbf{R}^{n}.

1. proj_{W} is a linear transformation.
2. For every x in W, we have $\operatorname{proj}_{W}(x)=x$.
3. The range of proj_{W} is W.

Poll

Let W be a subspace of \mathbf{R}^{n}.
Poll
Let A be the matrix for proj $_{w}$. What is A^{2} equal to?
A. A
B. A^{-1}
C. $-A$
D. 0
E. I_{n}
F. $-I_{n}$

For any x in $\mathbf{R}^{n}, \operatorname{proj}_{W}(x)$ is in W.
Hence $\operatorname{proj}_{W}\left(\operatorname{proj}_{W}(x)\right)=\operatorname{proj}_{W}(x)$.
So $\operatorname{proj}_{W} \circ \operatorname{proj}_{W}=\operatorname{proj}_{W}$.
The matrix for $\operatorname{proj}_{W} \circ \operatorname{proj}_{W}$ is A^{2}.
Therefore $A^{2}=A$.

Orthogonal Projections

Matrices

What is the matrix for $\operatorname{proj}_{W}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, where

$$
W=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} ?
$$

Answer: Recall how to compute the matrix for a linear transformation:

$$
A=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\operatorname{proj}_{W}\left(e_{1}\right) & \operatorname{proj}_{W}\left(e_{2}\right) & \operatorname{proj}_{W}\left(e_{3}\right)
\end{array}\right) .
$$

We compute:

$$
\begin{aligned}
& \operatorname{proj}_{W}\left(e_{1}\right)=\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{2}\right)=\frac{e_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{2} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=0+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{3}\right)=\frac{e_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=-\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 6 \\
1 / 3 \\
5 / 6
\end{array}\right)
\end{aligned}
$$

Therefore $A=\left(\begin{array}{ccc}5 / 6 & 1 / 3 & -1 / 6 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ -1 / 6 & 1 / 3 & 5 / 6\end{array}\right)$

Orthogonal Projections

What is the distance from e_{1} to $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$?
Answer: The closest point from e_{1} to W is $\operatorname{proj}_{W}\left(e_{1}\right)=\left(\begin{array}{c}5 / 6 \\ 1 / 3 \\ -1 / 6\end{array}\right)$. The distance from e_{1} to this point is

$$
\begin{aligned}
\operatorname{dist}\left(e_{1}, \operatorname{proj}_{w}\left(e_{1}\right)\right) & =\left\|\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right)\right\|=\left\|\left(\begin{array}{c}
1 / 6 \\
-1 / 3 \\
-1 / 6
\end{array}\right)\right\| \\
& =\sqrt{(1 / 6)^{2}+(-1 / 3)^{2}+(-1 / 6)^{2}} \\
& =\frac{1}{\sqrt{6}} .
\end{aligned}
$$

