
Announcements
November 16

I WeBWorK assignment 5.5 is due on Friday at 6am.

I Midterm 3 will take place in recitation on Friday, 11/18.
I It covers §§5.1, 5.2, 5.3, 5.5, and the material on stochastic matrices

(Perron–Frobenius theorem).

I A practice exam has been posted on the website.
I Solutions are posted as well.

I There are midterm details and study tips on Piazza.

I Triple office hours this week: today 1–3pm, Thursday 2:30–4:30pm, and
by appointment, in Skiles 221.

I As always, TAs’ office hours are posted on the website.
I Math Lab is also a good place to visit.



Review for Midterm 3

Selected Topics



Eigenvectors and Eigenvalues

Definition
Let A be an n × n matrix.

1. An eigenvector of A is a nonzero vector v in Rn such that Av = λv , for
some λ in R. In other words, Av is a multiple of v .

2. An eigenvalue of A is a number λ in R such that the equation Av = λv
has a nontrivial solution.

If Av = λv for v 6= 0, we say λ is the eigenvalue for v , and v is an
eigenvector for λ.

Definition
Let A be an n × n matrix and let λ be an eigenvalue of A. The λ-eigenspace
of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

λ-eigenspace =
{
v in Rn | Av = λv

}

=
{
v in Rn | (A− λI )v = 0

}

= Nul
(
A− λI

)
.

You find a basis for the λ-eigenspace by finding the parametric vector form for
the general solution to (A− λI )x = 0 using row reduction.



The Characteristic Polynomial

Definition
Let A be an n × n matrix. The characteristic polynomial of A is

f (λ) = det(A− λI ).

Important Facts:

1. The characteristic polynomial is a polynomial of degree n, of the following
form:

f (λ) = (−1)nλn + an−1λ
n−1 + · · ·+ a1λ+ a0.

2. The eigenvalues of A are the roots of f (λ).

3. The constant term f (0) = a0 is equal to det(A):

f (0) = det(A− 0I ) = det(A).

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic polynomial.



Similarity

Definition
Two n× n matrices A and B are similar if there is an invertible n× n matrix P
such that

A = PBP−1.

Important Facts:

1. Similar matrices have the same characteristic polynomial.

2. It follows that similar matrices have the same eigenvalues.

3. If A is similar to B and B is similar to C , then A is similar to C .

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.

2. Similarity has nothing to do with row equivalence.



Similarity
Geometric meaning

Let A = PBP−1, and let v1, v2, . . . , vn be the columns of P. These form a basis
B for Rn because P is invertible. Key relation: for any vectors x , y in Rn,

Ax = y ⇐⇒ B[x ]B = [y ]B.

This says:

A acts on the usual coordinates of x in the same way that B acts on the
B-coordinates of x .

Example:

A =

(
5/4 3/4
3/4 5/4

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
.

Then A = PBP−1. B acts on the usual coordinates by scaling the first
coordinate by 2, and the second by 1/2:

B

(
x1
x2

)
=

(
2x1
x2/2

)
.

The unit coordinate vectors are eigenvectors: e1 has eigenvalue 2, and e2 has
eigenvalue 1/2.



Similarity
Example

A =

(
5/4 3/4
3/4 5/4

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
.

In this case, B =
{(

1
1

)
,
(

1
−1

)}
. Let v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

To compute y = Ax :

1. Find [x ]B.

2. [y ]B = B[x ]B.

3. Compute y from [y ]B.

Say x =
(
2
0

)
.

1. x = v1 + v2 so [x ]B =
(
1
1

)
.

2. [y ]B = B
(
1
1

)
=
(

2
1/2

)
.

3. y = 2v1 + 1
2
v2 =

(
5/2
3/2

)
.

Picture:

v1

v2

x

Av1

Av2

AxA

A scales the v1-
coordinate by
2, and the v2-

coordinate by 1
2
.



Diagonalization

Definition
An n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = PDP−1 for D diagonal.

It is easy to take powers of diagonalizable matrices:

An = PDnP−1.

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. In this case, A = PDP−1 for

P =



| | |
v1 v2 · · · vn
| | |


 D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Corollary

An n × n matrix with n distinct eigenvalues is diagonalizable.



Non-Distinct Eigenvalues

Definition
Let A be a square matrix with eigenvalue λ. The geometric multiplicity of λ
is the dimension of the λ-eigenspace.

Theorem
Let A be an n × n matrix. Then A is diagonalizable if and only if, for every
eigenvalue λ, the algebraic multiplicity of λ is equal to the geometric
multiplicity.
(And all eigenvalues are real, unless you want to diagonalize over C.)

Note:

I The algebraic and geometric multiplicities are both whole numbers ≥ 1,
and the algebraic multiplicity is always greater than or equal to the
geometric multiplicity. In particular, they’re equal if the algebraic
multiplicity is 1.

I Equivalently, A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.



Non-Distinct Eigenvalues
Example

A =




1 1 0
0 1 0
0 0 2




This has eigenvalues 1 and 2, with algebraic multiplicities 2 and 1, respectively.

The geometric multiplicity of 2 is automatically 1.

Let’s compute the geometric multiplicity of 1:

A− I =




0 1 0
0 0 0
0 0 1


 rref




0 1 0
0 0 1
0 0 0


 .

This has 1 free variable, so the geometric multiplicity of 1 is 1. This is less
than the algebraic multiplicity, so the matrix is not diagonalizable.



Stochastic Matrices

Definition
A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1. It A is positive if all of its entries are
positive.

Definition
A steady state for a stochastic matrix A is an eigenvector w with eigenvalue 1,
such that its entries are positive and sum to 1.

Perron–Frobenius Theorem
If A is a positive stochastic matrix, then it admits a unique steady state vector
w . Moreover, for any vector v0 with entries summing to some number c, the
iterates v1 = Av0, v2 = Av1, . . . , approach cw as n gets large.

Think about it in terms of Red Box movies: vn is the number of movies in each
location on day n, and vn+1 = Avn. Eventually, the number of movies in each
location will be the same every day: vn = vn+1 = Avn. This means vn is an
eigenvector with eigenvalue 1, so it is a multiple of the steady state w :
vn = cw . Since the sum of the entries of w is 1, the sum of the entries of cw is
c, so on day n there are c movies. So if you started with c = 100 movies on
day 0, then you know vn = cw = 100w for large enough n: the total number of
movies doesn’t change.



Computing the Steady State

A =



.3 .4 .5
.3 .4 .3
.4 .2 .2




This is a positive stochastic matrix. To compute the steady state, first we find
some eigenvector with eigenvalue 1:

A− I =



−.7 .4 .5
.3 −.6 .3
.4 .2 −.8


 rref




1 0 −1.4
0 1 −1.2
0 0 0


 .

The parametric vector form is



x
y
z


 = z




1.4
1.2
1


. If we want the entries of our

eigenvector to sum to 1, we need to take

z =
1

1.4 + 1.2 + 1
=

1

3.6
=⇒ w =

1

3.6




1.4
1.2
1


 =




7/18
1/3

5/18


 .

This is the steady state. If v = (3, 11, 4) then Anv approaches 18w = (7, 6, 5).



Complex Eigenvectors

Complex eigenvalues and eigenvectors work just like their real counterparts,
with the additional fact:

Both eigenvalues and eigenvectors of real square
matrices occur in conjugate pairs.

Example: A =

(√
3 + 1 −2

1
√

3− 1

)
. The characteristic polynomial is

f (λ) = det

(√
3 + 1− λ −2

1
√

3− 1− λ

)

= (
√

3 + 1− λ)(
√

3− 1− λ) + 2

= (
√

3− λ)2 − 12 + 2 = λ2 − 2
√

3λ+ 4.

The quadratic formula tells us the eigenvalues are

λ =
2
√

3±
√

(2
√

3)2 − 16

2
=
√

3± i .



Complex Eigenvectors
Example

A =

(√
3 + 1 −2

1
√

3− 1

)
λ =
√

3± i

Let’s compute an eigenvector with eigenvalue λ =
√

3− i .

A− λI =

(
1 + i −2

1 −1 + i

)

swap (
1 −1 + i

1 + i −2

)

R2 = R2 − (1 + i)R1 (
1 −1 + i
0 0

)

This works because (1 + i)(−1 + i) = −1− i + i − 1 = −2. Hence

x + (−1 + i)y = 0, so x = (1− i)y , and an eigenvector is

(
1− i

1

)
.

An eigenvector with eigenvalue
√

3 + i is (automatically)

(
1 + i

1

)
.



Complex Eigenvectors
Shortcut in 2 × 2 case

Let A =

(
a b
c d

)
, and suppose that A 6= 0 and Ax = 0 has a nontrivial

solution. So the rank is 1, and hence the null space has dimension 1 = 2− 1.

It follows that the second row is a multiple of the first: otherwise A has two

pivots! So a row echelon form for A is

(
a b
0 0

)
, and

(
−b
a

)
is a nontrivial

solution to Ax = 0.

If A =

(
a b
c d

)
is nonzero and Ax = 0 has a nontrivial

solution, then x =

(
−b
a

)
is a nontrivial solution.

Shortcut

In the case of

(√
3 + 1 −2

1
√

3− 1

)
− (
√

3− i)I =

(
1 + i −2

1 −1 + i

)
, the

shortcut says

(
2

1 + i

)
is an eigenvector. Note

(
2

1 + i

)
= 1 + i

(
1− i

1

)
.



Geometric Interpretation of Complex Eigenvalues

Theorem
Let A be a 2× 2 matrix with complex (non-real) eigenvalue λ, and let v be an
eigenvector. Then

A = PCP−1

where

P =



| |

Re v Im v
| |


 and C =

(
Reλ Imλ
− Imλ Reλ

)
.

The matrix C is a composition of the counterclockwise rotation by negative the
argument of λ, and a scale by a factor of |λ|.
Example:

A =

(√
3 + 1 −2

1
√

3− 1

)
λ =
√

3− i v =

(
1− i

1

)

This gives

C =

(
Reλ Imλ
− Imλ Reλ

)
=

(√
3 −1

1
√

3

)

P =

(
Re(1− i) Im(1− i)
Re(1) Im(1)

)
=

(
1 −1
1 0

)



Geometric Interpretation of Complex Eigenvalues
Example

A =

(√
3 + 1 −2

1
√

3− 1

)
C =

(√
3 −1

1
√

3

)
P =

(
1 −1
1 0

)
λ =
√

3−i

The Theorem says that C scales by a factor of

|λ| =

√
(
√

3)2 + (−1)2 =
√

3 + 1 = 2.

It rotates counterclockwise by the argument of λ =
√

3 + i , which is π/6:

λ

θ
√
3

1 θ = tan−1

(
1√
3

)
=
π

6

A

“rotate around
an ellipse”
scale by 2



Computing the Argument of a Complex Number
Caveat

Warning: if λ = a + bi , you can’t just plug tan−1(b/a) into your calculator and
expect to get the argument of λ.

Example: If λ = −1−
√

3i then

tan−1

(−
√

3

−1

)
= tan−1(

√
3) =

π

3
.

Anyway that’s the number your calculator will give you.

You have to draw a picture:

λ

θ

1

√
3

θ = tan−1(
√

3) =
π

3

argument = θ + π =
4π

3

Tip: review your trig identities (special values of trig functions)!


