Announcements

- WeBWorK assignment 5.5 is due on Friday at 6am.
- Midterm 3 will take place in recitation on Friday, 11/18.
- It covers $\S \S 5.1,5.2,5.3,5.5$, and the material on stochastic matrices (Perron-Frobenius theorem).
- A practice exam has been posted on the website.
- Solutions are posted as well.
- There are midterm details and study tips on Piazza.
- Triple office hours this week: today $1-3 \mathrm{pm}$, Thursday $2: 30-4: 30 \mathrm{pm}$, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Review for Midterm 3

Selected Topics

Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

1. An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}. In other words, $A v$ is a multiple of v.
2. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
If $A v=\lambda v$ for $v \neq 0$, we say λ is the eigenvalue for v, and v is an eigenvector for λ.

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\begin{aligned}
\lambda \text {-eigenspace } & =\left\{v \text { in } \mathbf{R}^{n} \mid A v=\lambda v\right\} \\
& =\left\{v \text { in } \mathbf{R}^{n} \mid(A-\lambda I) v=0\right\} \\
& =\operatorname{Nul}(A-\lambda I)
\end{aligned}
$$

You find a basis for the λ-eigenspace by finding the parametric vector form for the general solution to $(A-\lambda I) x=0$ using row reduction.

The Characteristic Polynomial

Definition

Let A be an $n \times n$ matrix. The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

Important Facts:

1. The characteristic polynomial is a polynomial of degree n, of the following form:

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}
$$

2. The eigenvalues of A are the roots of $f(\lambda)$.
3. The constant term $f(0)=a_{0}$ is equal to $\operatorname{det}(A)$:

$$
f(0)=\operatorname{det}(A-0 I)=\operatorname{det}(A)
$$

Definition

The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that

$$
A=P B P^{-1}
$$

Important Facts:

1. Similar matrices have the same characteristic polynomial.
2. It follows that similar matrices have the same eigenvalues.
3. If A is similar to B and B is similar to C, then A is similar to C.

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.
2. Similarity has nothing to do with row equivalence.

Similarity

Geometric meaning

Let $A=P B P^{-1}$, and let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. These form a basis \mathcal{B} for \mathbf{R}^{n} because P is invertible. Key relation: for any vectors x, y in \mathbf{R}^{n},

$$
A x=y \quad \Longleftrightarrow \quad B[x]_{\mathcal{B}}=[y]_{\mathcal{B}}
$$

This says:
A acts on the usual coordinates of x in the same way that B acts on the \mathcal{B}-coordinates of x.

Example:

$$
A=\left(\begin{array}{cc}
5 / 4 & 3 / 4 \\
3 / 4 & 5 / 4
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Then $A=P B P^{-1}$. B acts on the usual coordinates by scaling the first coordinate by 2 , and the second by $1 / 2$:

$$
B\binom{x_{1}}{x_{2}}=\binom{2 x_{1}}{x_{2} / 2} .
$$

The unit coordinate vectors are eigenvectors: e_{1} has eigenvalue 2 , and e_{2} has eigenvalue $1 / 2$.

Similarity

Example

$$
A=\left(\begin{array}{cc}
5 / 4 & 3 / 4 \\
3 / 4 & 5 / 4
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

In this case, $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$. Let $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$.

To compute $y=A x$:

1. Find $[x]_{\mathcal{B}}$.
2. $[y]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
3. Compute y from $[y]_{\mathcal{B}}$.

$$
\begin{aligned}
& \text { Say } x=\binom{2}{0} . \\
& \text { 1. } x=v_{1}+v_{2} \text { so }[x]_{\mathcal{B}}=\binom{1}{1} . \\
& \text { 2. }[y]_{\mathcal{B}}=B\binom{1}{1}=\binom{2}{1 / 2} . \\
& \text { 3. } y=2 v_{1}+\frac{1}{2} v_{2}=\binom{5 / 2}{3 / 2} .
\end{aligned}
$$

Picture:

Diagonalization

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

It is easy to take powers of diagonalizable matrices:

$$
A^{n}=P D^{n} P^{-1} .
$$

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Corollary
An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Non-Distinct Eigenvalues

Definition

Let A be a square matrix with eigenvalue λ. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if, for every eigenvalue λ, the algebraic multiplicity of λ is equal to the geometric multiplicity.
(And all eigenvalues are real, unless you want to diagonalize over \mathbf{C}.)

Note:

- The algebraic and geometric multiplicities are both whole numbers ≥ 1, and the algebraic multiplicity is always greater than or equal to the geometric multiplicity. In particular, they're equal if the algebraic multiplicity is 1 .
- Equivalently, A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues is n.

Non-Distinct Eigenvalues

Example

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

This has eigenvalues 1 and 2, with algebraic multiplicities 2 and 1 , respectively.
The geometric multiplicity of 2 is automatically 1 .
Let's compute the geometric multiplicity of 1 :

$$
A-I=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \underset{\sim}{\text { rref }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

This has 1 free variable, so the geometric multiplicity of 1 is 1 . This is less than the algebraic multiplicity, so the matrix is not diagonalizable.

Stochastic Matrices

Definition

A square matrix A is stochastic if all of its entries are nonnegative, and the sum of the entries of each column is 1 . It A is positive if all of its entries are positive.

Definition

A steady state for a stochastic matrix A is an eigenvector w with eigenvalue 1 , such that its entries are positive and sum to 1 .

Perron-Frobenius Theorem

If A is a positive stochastic matrix, then it admits a unique steady state vector w. Moreover, for any vector v_{0} with entries summing to some number c, the iterates $v_{1}=A v_{0}, v_{2}=A v_{1}, \ldots$, approach $c w$ as n gets large.

Think about it in terms of Red Box movies: v_{n} is the number of movies in each location on day n, and $v_{n+1}=A v_{n}$. Eventually, the number of movies in each location will be the same every day: $v_{n}=v_{n+1}=A v_{n}$. This means v_{n} is an eigenvector with eigenvalue 1 , so it is a multiple of the steady state w :
$v_{n}=c w$. Since the sum of the entries of w is 1 , the sum of the entries of $c w$ is c, so on day n there are c movies. So if you started with $c=100$ movies on day 0 , then you know $v_{n}=c w=100 w$ for large enough n : the total number of movies doesn't change.

Computing the Steady State

$$
A=\left(\begin{array}{lll}
.3 & .4 & .5 \\
.3 & .4 & .3 \\
.4 & .2 & .2
\end{array}\right)
$$

This is a positive stochastic matrix. To compute the steady state, first we find some eigenvector with eigenvalue 1 :

$$
A-I=\left(\begin{array}{ccc}
-.7 & .4 & .5 \\
.3 & -.6 & .3 \\
.4 & .2 & -.8
\end{array}\right) \underset{\sim m}{\text { rref }}\left(\begin{array}{ccc}
1 & 0 & -1.4 \\
0 & 1 & -1.2 \\
0 & 0 & 0
\end{array}\right) .
$$

The parametric vector form is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=z\left(\begin{array}{c}1.4 \\ 1.2 \\ 1\end{array}\right)$. If we want the entries of our eigenvector to sum to 1 , we need to take

$$
z=\frac{1}{1.4+1.2+1}=\frac{1}{3.6} \quad \Longrightarrow \quad w=\frac{1}{3.6}\left(\begin{array}{c}
1.4 \\
1.2 \\
1
\end{array}\right)=\left(\begin{array}{c}
7 / 18 \\
1 / 3 \\
5 / 18
\end{array}\right)
$$

This is the steady state. If $v=(3,11,4)$ then $A^{n} v$ approaches $18 w=(7,6,5)$.

Complex Eigenvectors

Complex eigenvalues and eigenvectors work just like their real counterparts, with the additional fact:

Both eigenvalues and eigenvectors of real square matrices occur in conjugate pairs.

Example: $A=\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$. The characteristic polynomial is

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{cc}
\sqrt{3}+1-\lambda & -2 \\
1 & \sqrt{3}-1-\lambda
\end{array}\right) \\
& =(\sqrt{3}+1-\lambda)(\sqrt{3}-1-\lambda)+2 \\
& =(\sqrt{3}-\lambda)^{2}-1^{2}+2=\lambda^{2}-2 \sqrt{3} \lambda+4 .
\end{aligned}
$$

The quadratic formula tells us the eigenvalues are

$$
\lambda=\frac{2 \sqrt{3} \pm \sqrt{(2 \sqrt{3})^{2}-16}}{2}=\sqrt{3} \pm i
$$

Complex Eigenvectors

Example

$$
A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \quad \lambda=\sqrt{3} \pm i
$$

Let's compute an eigenvector with eigenvalue $\lambda=\sqrt{3}-i$.

$$
\begin{gathered}
A-\lambda I=\left(\begin{array}{cc}
1+i & -2 \\
1 & -1+i
\end{array}\right) \\
\underset{\operatorname{swap}}{\operatorname{man} \rightarrow}\left(\begin{array}{cc}
1 & -1+i \\
1+i & -2
\end{array}\right)
\end{gathered}
$$

$$
\underset{\text { mummummumum }}{R_{2}=R_{2}-(1+i) R_{1}}\left(\begin{array}{cc}
1 & -1+i \\
0 & 0
\end{array}\right)
$$

This works because $(1+i)(-1+i)=-1-i+i-1=-2$. Hence
$x+(-1+i) y=0$, so $x=(1-i) y$, and an eigenvector is $\binom{1-i}{1}$.
An eigenvector with eigenvalue $\sqrt{3}+i$ is (automatically) $\binom{1+i}{1}$.

Complex Eigenvectors

Shortcut in 2×2 case

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and suppose that $A \neq 0$ and $A x=0$ has a nontrivial solution. So the rank is 1 , and hence the null space has dimension $1=2-1$. It follows that the second row is a multiple of the first: otherwise A has two pivots! So a row echelon form for A is $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$, and $\binom{-b}{a}$ is a nontrivial solution to $A x=0$.

Shortcut

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is nonzero and $A x=0$ has a nontrivial solution, then $x=\binom{-b}{a}$ is a nontrivial solution.

In the case of $\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)-(\sqrt{3}-i) I=\left(\begin{array}{cc}1+i & -2 \\ 1 & -1+i\end{array}\right)$, the shortcut says $\binom{2}{1+i}$ is an eigenvector. Note $\binom{2}{1+i}=1+i\binom{1-i}{1}$.

Geometric Interpretation of Complex Eigenvalues

Theorem

Let A be a 2×2 matrix with complex (non-real) eigenvalue λ, and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} v \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{rr}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right) .
$$

The matrix C is a composition of the counterclockwise rotation by negative the argument of λ, and a scale by a factor of $|\lambda|$.

Example:

$$
A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \quad \lambda=\sqrt{3}-i \quad v=\binom{1-i}{1}
$$

This gives

$$
\begin{aligned}
C & =\left(\begin{array}{rr}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \\
P & =\left(\begin{array}{ll}
\operatorname{Re}(1-i) & \operatorname{Im}(1-i) \\
\operatorname{Re}(1) & \operatorname{Im}(1)
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Geometric Interpretation of Complex Eigenvalues

Example

$$
A=\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \quad C=\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \quad \lambda=\sqrt{3}-i
$$

The Theorem says that C scales by a factor of

$$
|\lambda|=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=\sqrt{3+1}=2
$$

It rotates counterclockwise by the argument of $\bar{\lambda}=\sqrt{3}+i$, which is $\pi / 6$:

$$
\theta=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
$$

Computing the Argument of a Complex Number

Warning: if $\lambda=a+b i$, you can't just plug $\tan ^{-1}(b / a)$ into your calculator and expect to get the argument of λ.

Example: If $\lambda=-1-\sqrt{3} i$ then

$$
\tan ^{-1}\left(\frac{-\sqrt{3}}{-1}\right)=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}
$$

Anyway that's the number your calculator will give you.
You have to draw a picture:

$$
\begin{aligned}
& \theta=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3} \\
& \text { argument }=\theta+\pi=\frac{4 \pi}{3}
\end{aligned}
$$

Tip: review your trig identities (special values of trig functions)!

