Announcements

- WeBWorK assignment 5.5 is due on Friday at 6am.
- Midterm 3 will take place in recitation on Friday, 11/18.
- It covers $\S \S 5.1,5.2,5.3,5.5$, and the material on stochastic matrices (Perron-Frobenius theorem).
- A practice exam has been posted on the website.
- I'll post the solutions later this week.
- There are midterm details and study tips on Piazza.
- Post requests for Wednesday's review session on Piazza.
- Triple office hours this week: today $2-4 \mathrm{pm}$, Wednesday $1-3 \mathrm{pm}$, Thursday 2:30-4:30pm, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Chapter 6

Orthogonality and Least Squares

Section 6.1

Inner Product, Length, and Orthogonality

Orientation

Recall: this course is about learning to:

- Solve the matrix equation $A x=b$
- Solve the matrix equation $A x=\lambda x$
- Almost solve the equation $A x=b$

We are now aiming for the last topic.
Idea: in the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v.

Due to measurement error, though, the measured x is not actually in Span $\{u, v\}$. In other words, the equation $a u+b v=x$ has no solution. What do you do? The real value is probably the closest point to x on $\operatorname{Span}\{u, v\}$. Which point is that?

The Dot Product

We need a notion of angle between two vectors, and in particular, a notion of orthogonality (i.e. when two vectors are perpendicular). This is the purpose of the dot product.
Definition
The dot product of two vectors x, y in \mathbf{R}^{n} is

$$
x \cdot y=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \stackrel{\text { def }}{=} x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Thinking of x, y as column vectors, this is the same as $x^{T} y$.
Example

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=1 \cdot 4+2 \cdot 5+3 \cdot 6=32 .
$$

Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- $x \cdot y=y \cdot x$
- $(x+y) \cdot z=x \cdot z+y \cdot z$
- $(c x) \cdot y=c(x \cdot y)$

Dotting a vector with itself is special:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

Hence:

- $x \cdot x \geq 0$
- $x \cdot x=0$ if and only if $x=0$.

Important: $x \cdot y=0$ does not imply $x=0$ or $y=0$. For example, $\binom{1}{0} \cdot\binom{0}{1}=0$.

The Dot Product and Length

Definition

The length or norm of a vector x in \mathbf{R}^{n} is

$$
\|x\|=\sqrt{x \cdot x}
$$

Why is this a good definition? The Pythagorean theorem!

$$
\left\|\binom{3}{4}\right\|=\sqrt{3^{2}+4^{2}}=5
$$

Fact
If x is a vector and c is a scalar, then $\|c x\|=|c| \cdot\|x\|$.

$$
\left\|\binom{6}{8}\right\|=\left\|2\binom{3}{4}\right\|=2\left\|\binom{3}{4}\right\|=10
$$

The Dot Product and Distance

Definition

The distance between two points x, y in \mathbf{R}^{n} is

$$
\operatorname{dist}(x, y)=\|y-x\| .
$$

This is just the length of the vector from x to y.

Example

Let $x=(1,2)$ and $y=(4,4)$. Then

$$
\operatorname{dist}(y, x)=\|y-x\|=\left\|\binom{3}{2}\right\|=\sqrt{3^{2}+2^{2}}=\sqrt{13} .
$$

Unit Vectors

Definition

A unit vector is a vector v with length $\|v\|=1$.

Example

The unit coordinate vectors are unit vectors:

$$
\left\|e_{1}\right\|=\left\|\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\|=\sqrt{1^{2}+0^{2}+0^{2}}=1
$$

Definition

Let x be a nonzero vector in \mathbf{R}^{n}. The unit vector in the direction of x is the vector $\frac{x}{\|x\|}$.

This is in fact a unit vector:

$$
\text { scalar } \quad\left\|\frac{x}{\|x\| \|}\right\|=\frac{1}{\|x\|}\|x\|=1 \text {. }
$$

Unit Vectors

Example

Example

What is the unit vector in the direction of $x=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$?

$$
\frac{x}{\|x\|}=\frac{1}{\sqrt{1^{2}+2^{2}+3^{2}+4^{2}}}\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)=\frac{1}{\sqrt{30}}\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

Orthogonality

Definition

Two vectors x, y are orthogonal or perpendicular if $x \cdot y=0$.
Notation: $x \perp y$ means $x \cdot y=0$.
Why is this a good definition? The Pythagorean theorem / law of cosines!

$$
\begin{aligned}
\begin{array}{c}
x \text { and } y \text { are } \\
\text { perpendicular }
\end{array} & \Longleftrightarrow\|x\|^{2}+\|y\|^{2}=\|x-y\|^{2} \\
& \Longleftrightarrow x \cdot x+y \cdot y=(x-y) \cdot(x-y) \\
& \Longleftrightarrow x \cdot x+y \cdot y=x \cdot x+y \cdot y-2 x \cdot y \\
& \Longleftrightarrow x \cdot y=0
\end{aligned}
$$

Fact: $x \perp y \Longleftrightarrow\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$

Orthogonality

Example

Problem: find all vectors orthogonal to $v=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$.
We have to find all vectors x such that $x \cdot v=0$. This means solving the equation

$$
0=x \cdot v=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=x_{1}+x_{2}-x_{3}
$$

The parametric form for the solution is $x_{1}=-x_{2}+x_{3}$, so the parametric vector form of the general solution is

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

For instance, $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right) \perp\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ because $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)=0$.

Orthogonality

Example

Problem: find all vectors orthogonal to both $v=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Now we have to solve the system of two homogeneous equations

$$
\begin{aligned}
& 0=x \cdot v=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=x_{1}+x_{2}-x_{3} \\
& 0=x \cdot w=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=x_{1}+x_{2}+x_{3}
\end{aligned}
$$

In matrix form:

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right) \underset{\sim}{\text { rref }} \underset{\sim}{m}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The parametric vector form of the solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

Orthogonality

Problem: find all vectors orthogonal to some number of vectors $v_{1}, v_{2}, \ldots, v_{m}$ in \mathbf{R}^{n}.

This is the same as finding all vectors x such that

$$
0=v_{1}^{T} x=v_{2}^{\top} x=\cdots=v_{m}^{\top} x
$$

$\begin{aligned} & \text { Putting the row vectors } v_{1}^{T}, v_{2}^{T}, \ldots, v_{m}^{T} \\ & \text { into a matrix, this is the same as finding } \\ & \text { all } x \text { such that }\end{aligned} \quad\left(\begin{array}{c}-v_{1}^{T}- \\ -v_{2}^{T}- \\ \vdots \\ -v_{m}^{T}-\end{array}\right) x=0$.

Important

The set of all vectors orthogonal to some vectors $v_{1}, v_{2}, \ldots, v_{m}$ in \mathbf{R}^{n} is the null space of the $m \times n$ matrix

In particular, this set is a subspace!

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^{n}. Its orthogonal complement is

$$
W^{\perp}=\left\{v \text { in } \mathbf{R}^{n} \mid v \cdot w=0 \text { for all } w \text { in } W\right\} .
$$

Pictures:

The orthogonal complement of a line in \mathbf{R}^{2} is the perpendicular line.

The orthogonal complement of a line in \mathbf{R}^{3} is the perpendicular plane.

The orthogonal complement of a plane in \mathbf{R}^{3} is the perpendicular line.

Let W be a plane in \mathbf{R}^{4}. How would you describe W^{\perp} ?
A. The zero space $\{0\}$.
B. A line in \mathbf{R}^{4}.
C. A plane in \mathbf{R}^{4}.
D. A 3-dimensional space in \mathbf{R}^{4}.
E. All of \mathbf{R}^{4}.

Orthogonal Complements

Basic Properties

Let W be a subspace of \mathbf{R}^{n}.

Facts:

1. W^{\perp} is also a subspace of \mathbf{R}^{n}
2. $\left(W^{\perp}\right)^{\perp}=W$
3. $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$
4. If $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then

$$
\begin{aligned}
W^{\perp} & =\text { all vectors orthogonal to each } v_{1}, v_{2}, \ldots, v_{m} \\
& =\left\{x \text { in } \mathbf{R}^{n} \mid x \cdot v_{i}=0 \text { for all } i=1,2, \ldots, m\right\} .
\end{aligned}
$$

Let's check 1.

- Is 0 in W^{\perp} ? Yes: $0 \cdot w=0$ for any w in W.
- Suppose x, y are in W^{\perp}. So $x \cdot w=0$ and $y \cdot w=0$ for all w in W. Then $(x+y) \cdot w=x \cdot w+y \cdot w=0+0=0$ for all w in W. So $x+y$ is also in W^{\perp}.
- Suppose x is in W^{\perp}. So $x \cdot w=0$ for all w in W. If c is a scalar, then $(c x) \cdot w=c(x \cdot 0)=c(0)=0$ for any w in W. So $c x$ is in W^{\perp}.

Orthogonal Complements

Computation

Problem: if $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$, compute W^{\perp}.
By property 4, we just have to find all vectors that are orthogonal to both $(1,1,-1)$ and $(1,1,1)$. We know how to do this: it is the null space of the matrix whose rows are $(1,1,-1)$ and $(1,1,1)$. We computed it before:

$$
\operatorname{Nul}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\}
$$

$$
\text { If } W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \text {, then } W^{\perp}=\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{\top}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{\top}-
\end{array}\right)
$$

Orthogonal Complements

Definition

The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted Row A. Equivalently, it is the column span of A^{T} :

$$
\operatorname{Row} A=\operatorname{Col} A^{T}
$$

It is a subspace of \mathbf{R}^{n}.
We showed before that if A has rows $v_{1}^{T}, v_{2}^{T}, \ldots, v_{m}^{T}$, then

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul} A
$$

Hence we have shown:
Fact: $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$.
Replacing A by A^{T}, and remembering Row $A^{T}=\operatorname{Col} A$:
Fact: $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$.
Using property 2 and taking the orthogonal complements of both sides, we get:
Fact: $(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A$ and $\operatorname{Col} A=\left(\operatorname{NuI} A^{T}\right)^{\perp}$.

