- ▶ WeBWorK assignment 5.5 is due on Friday at 6am.
- ▶ Midterm 3 will take place in recitation on Friday, 11/18.
 - ▶ It covers §§5.1, 5.2, 5.3, 5.5, and the material on stochastic matrices (Perron–Frobenius theorem).
- ▶ A practice exam has been posted on the website.
 - I'll post the solutions later this week.
- ▶ There are midterm details and study tips on Piazza.
- Post requests for Wednesday's review session on Piazza.
- ► Triple office hours this week: today 2–4pm, Wednesday 1–3pm, Thursday 2:30–4:30pm, and by appointment, in Skiles 221.
 - As always, TAs' office hours are posted on the website.
 - Math Lab is also a good place to visit.

Chapter 6

Orthogonality and Least Squares

Section 6.1

Inner Product, Length, and Orthogonality

Orientation

Recall: this course is about learning to:

- ▶ Solve the matrix equation Ax = b
- ▶ Solve the matrix equation $Ax = \lambda x$
- ▶ Almost solve the equation Ax = b

We are now aiming for the last topic.

Idea: in the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v.

Due to measurement error, though, the measured x is not actually in $\mathrm{Span}\{u,v\}$. In other words, the equation au+bv=x has no solution. What do you do? The real value is probably the *closest* point to x on $\mathrm{Span}\{u,v\}$. Which point is that?

The Dot Product

We need a notion of *angle* between two vectors, and in particular, a notion of *orthogonality* (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

Definition

The **dot product** of two vectors x, y in \mathbb{R}^n is

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Thinking of x, y as column vectors, this is the same as $x^T y$.

Example

$$\begin{pmatrix}1\\2\\3\end{pmatrix}\cdot\begin{pmatrix}4\\5\\6\end{pmatrix}=\begin{pmatrix}1&2&3\end{pmatrix}\begin{pmatrix}4\\5\\6\end{pmatrix}=1\cdot 4+2\cdot 5+3\cdot 6=32.$$

Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- $\triangleright x \cdot y = y \cdot x$
- $(x + y) \cdot z = x \cdot z + y \cdot z$
- $(cx) \cdot y = c(x \cdot y)$

Dotting a vector with itself is special:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + x_2^2 + \dots + x_n^2.$$

Hence:

- $\rightarrow x \cdot x > 0$
- $\triangleright x \cdot x = 0$ if and only if x = 0.

Important: $x \cdot y = 0$ does *not* imply x = 0 or y = 0. For example, $\binom{1}{0} \cdot \binom{0}{1} = 0$.

The Dot Product and Length

Definition

The **length** or **norm** of a vector x in \mathbb{R}^n is

$$||x|| = \sqrt{x \cdot x}.$$

Why is this a good definition? The Pythagorean theorem!

$$\left\| \begin{pmatrix} 3\\4 \end{pmatrix} \right\| = \sqrt{3^2 + 4^2} = 5$$

Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

$$\left\| \begin{pmatrix} 6 \\ 8 \end{pmatrix} \right\| = \left\| 2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = 2 \left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = 10$$

The Dot Product and Distance

Definition

The **distance** between two points x, y in \mathbb{R}^n is

$$\mathsf{dist}(x,y) = \|y - x\|.$$

This is just the length of the vector from x to y.

Example

Let x = (1,2) and y = (4,4). Then

$$dist(y, x) = ||y - x|| = \left\| {3 \choose 2} \right\| = \sqrt{3^2 + 2^2} = \sqrt{13}.$$

Unit Vectors

Definition

A unit vector is a vector v with length ||v|| = 1.

Example

The unit coordinate vectors are unit vectors:

$$\|e_1\| = \left\| egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}
ight\| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Definition

Let x be a nonzero vector in \mathbf{R}^n . The unit vector in the direction of x is the vector $\frac{x}{\|x\|}$.

This is in fact a unit vector:

scalar
$$\left\| \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \|x\| = 1.$$

Unit Vectors Example

Example

What is the unit vector in the direction of
$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
?

$$\frac{x}{\|x\|} = \frac{1}{\sqrt{1^2 + 2^2 + 3^2 + 4^2}} \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} = \frac{1}{\sqrt{30}} \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}.$$

Orthogonality

Definition

Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$. *Notation*: $x \perp y$ means $x \cdot y = 0$.

Why is this a good definition? The Pythagorean theorem / law of cosines!

$$x$$
 and y are perpendicular $\iff \|x\|^2 + \|y\|^2 = \|x - y\|^2$ $\iff x \cdot x + y \cdot y = (x - y) \cdot (x - y)$ $\iff x \cdot x + y \cdot y = x \cdot x + y \cdot y - 2x \cdot y$ $\iff x \cdot y = 0$

Fact:
$$x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2$$

Problem: find all vectors orthogonal to
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

We have to find all vectors x such that $x \cdot v = 0$. This means solving the equation

$$0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3.$$

The parametric form for the solution is $x_1 = -x_2 + x_3$, so the parametric vector form of the general solution is

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

For instance,
$$\begin{pmatrix} -1\\1\\0 \end{pmatrix} \perp \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$
 because $\begin{pmatrix} -1\\1\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\-1 \end{pmatrix} = 0$.

Orthogonality Example

Problem: find all vectors orthogonal to both
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Now we have to solve the system of two homogeneous equations

$$0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3$$
$$0 = x \cdot w = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x_1 + x_2 + x_3.$$

In matrix form:

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\mathsf{rref}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

The parametric vector form of the solution is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Orthogonality

General procedure

Problem: find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n .

This is the same as finding all vectors x such that

$$0 = v_1^T x = v_2^T x = \cdots = v_m^T x.$$

Putting the *row* vectors $v_1^T, v_2^T, \dots, v_m^T$ into a matrix, this is the same as finding $\begin{pmatrix} -v_1 & -v_2 \\ -v_2^T & -v_2 \\ \vdots \\ -v_n \end{pmatrix} x = 0.$

$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix} x = 0.$$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbf{R}^n is the *null space* of the $m \times n$ matrix $\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_1^T - \end{pmatrix}.$

$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_n^T - \end{pmatrix}$$

In particular, this set is a subspace!

Orthogonal Complements

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbf{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \}.$$

Pictures:

The orthogonal complement of a line in ${\bf R}^2$ is the perpendicular line.

The orthogonal complement of a line in \mathbb{R}^3 is the perpendicular plane.

The orthogonal complement of a plane in ${\bf R}^3$ is the perpendicular line.

Poll

Let W be a plane in \mathbb{R}^4 . How would you describe W^{\perp} ?

A. The zero space $\{0\}$.

B. A line in \mathbb{R}^4 .

C. A plane in R⁴. D. A 3-dimensional space in \mathbb{R}^4 .

E. All of \mathbb{R}^4 .

Let W be a subspace of \mathbb{R}^n .

Facts:

- 1. W^{\perp} is also a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. dim $W + \dim W^{\perp} = n$
- 4. If $W = \text{Span}\{v_1, v_2, \dots, v_m\}$, then

$$W^{\perp} = \text{all vectors orthogonal to each } v_1, v_2, \dots, v_m$$

= $\{x \text{ in } \mathbf{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \dots, m\}.$

Let's check 1.

- ▶ Is 0 in W^{\perp} ? Yes: $0 \cdot w = 0$ for any w in W.
- Suppose x, y are in W^{\perp} . So $x \cdot w = 0$ and $y \cdot w = 0$ for all w in W. Then $(x+y) \cdot w = x \cdot w + y \cdot w = 0 + 0 = 0$ for all w in W. So x+y is also in W^{\perp} .
- Suppose x is in W^{\perp} . So $x \cdot w = 0$ for all w in W. If c is a scalar, then $(cx) \cdot w = c(x \cdot 0) = c(0) = 0$ for any w in W. So cx is in W^{\perp} .

Orthogonal Complements

Computation

Problem: if
$$W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
, compute W^{\perp} .

By property 4, we just have to find all vectors that are orthogonal to both (1,1,-1) and (1,1,1). We know how to do this: it is the null space of the matrix whose *rows* are (1,1,-1) and (1,1,1). We computed it before:

$$\operatorname{\mathsf{Nul}} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} = \operatorname{\mathsf{Span}} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

If
$$W = \mathsf{Span}\{v_1, v_2, \dots, v_m\}$$
, then $W^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^{\mathcal{T}} - \\ -v_2^{\mathcal{T}} - \\ \vdots \\ -v_m^{\mathcal{T}} - \end{pmatrix}$.

Orthogonal Complements

Row space, column space, null space

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A. Equivalently, it is the column span of A^T :

$$Row A = Col A^T$$
.

It is a subspace of \mathbf{R}^n .

We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: $(\text{Nul } A)^{\perp} = \text{Row } A \text{ and } \text{Col } A = (\text{Nul } A^{T})^{\perp}.$