Math 1553 Quiz 8

Solutions

1. Let $A=\left(\begin{array}{cc}13 & 4 \\ -20 & -5\end{array}\right)$.
a) [5 points] Find an invertible matrix C and a diagonal matrix D such that $A=$ $C D C^{-1}$.
b) [5 points] Compute A^{9}. (You need not simplify the entries of the resulting matrix.)

Solution.

a) First we find the characteristic polynomial of A :

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
13-\lambda & 4 \\
-20 & -5-\lambda
\end{array}\right)=\lambda^{2}-8 \lambda+15=(\lambda-3)(\lambda-5) .
$$

Therefore A has eigenvalues 3 and 5. Next we compute an eigenvector with eigenvalue 3 :

$$
A-3 I=\left(\begin{array}{cc}
10 & 4 \\
-20 & -8
\end{array}\right) \stackrel{\text { rref }}{\text { mam }}\left(\begin{array}{cc}
1 & \frac{2}{5} \\
0 & 0
\end{array}\right)
$$

The equation $(A-3 I) x=0$ has parametric form $x=-\frac{2}{5} y$, so an eigenvector is $\binom{-\frac{2}{5}}{1}$; multiplying by 5 , another eigenvector is $\binom{-2}{5}$. Now we compute an eigenvector with eigenvalue 5 :

$$
A-5 I=\left(\begin{array}{cc}
8 & 4 \\
-20 & -10
\end{array}\right) \stackrel{\text { rref }}{\text { man }}\left(\begin{array}{ll}
1 & \frac{1}{2} \\
0 & 0
\end{array}\right) .
$$

The equation $(A-5 I) x=0$ has parametric form $x=-\frac{1}{2} y$, so an eigenvector is $\binom{-\frac{1}{2}}{1}$; multiplying by 2 , another eigenvector is $\binom{-1}{2}$.

It follows from these computations that

$$
A=C D C^{-1} \quad \text { where } \quad C=\left(\begin{array}{cc}
-2 & -1 \\
5 & 2
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right) .
$$

b) $A^{9}=C D^{9} C^{-1}=\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)\left(\begin{array}{cc}3^{9} & 0 \\ 0 & 5^{9}\end{array}\right)\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)^{-1}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
-2 & -1 \\
5 & 2
\end{array}\right)\left(\begin{array}{cc}
3^{9} & 0 \\
0 & 5^{9}
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-5 & -2
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 & -1 \\
5 & 2
\end{array}\right)\left(\begin{array}{cc}
3^{9} \cdot 2 & 3^{9} \\
-5^{10} & -2 \cdot 5^{9}
\end{array}\right)=\left(\begin{array}{cc}
5^{10}-3^{9} \cdot 4 & 2 \cdot 5^{9}-2 \cdot 3^{9} \\
3^{9} \cdot 10-5^{10} \cdot 2 & 3^{9} \cdot 5-4 \cdot 5^{9}
\end{array}\right)
\end{aligned}
$$

