Announcements

November 9

- ▶ WeBWorK assignment 5.3 is due on Friday at 6am.
- ▶ Midterm 3 will take place in recitation on Friday, 11/18.
- Office hours: today 1–2pm, tomorrow 3:30–4:30pm, and by appointment, in Skiles 221.
 - As always, TAs' office hours are posted on the website.
 - Math Lab is also a good place to visit.

Theorem

Let A be a 2 \times 2 matrix with complex eigenvalue $\lambda = a + bi$ (where $b \neq 0$), and let v be an eigenvector. Then

$$A = PCP^{-1}$$

where

$$P = \begin{pmatrix} | & | \\ \operatorname{Re} v & \operatorname{Im} v \\ | & | \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

If $a + bi = r(\cos \theta + i \sin \theta)$ then

$$C = \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$$

is a composition of rotation by $-\theta$ and scaling by r.

A 2×2 matrix with complex eigenvalue λ is similar to (rotation by the argument of $\overline{\lambda}$) composed with (scaling by $|\lambda|$). This is multiplication by $\overline{\lambda}$ in $\mathbf{C}\sim\mathbf{R}^2$.

Geometric Interpretation of Complex Eigenvalues

Let
$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
: a complex eigenvalue is $\lambda = (1-i)/\sqrt{2}$, with eigenvector $\begin{pmatrix} 1 \\ i \end{pmatrix}$. The argument of λ is $-\pi/4$:

so the argument of $\overline{\lambda}$ is $\pi/4$. The absolute value of λ is

$$|\lambda| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1.$$

Therefore

 2×2 example

$$A = PCP^{-1}$$
 where $P = \left(\operatorname{Re} \begin{pmatrix} 1 \\ i \end{pmatrix} \operatorname{Im} \begin{pmatrix} 1 \\ i \end{pmatrix} \right) = I_2, \ C = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$.

So we recovered that A is rotation by $\pi/4$.

Geometric Interpretation of Complex Eigenvalues Another 2 × 2 example

What does
$$A = \frac{1}{2} \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix}$$
 do geometrically?

Answer: First we find the eigenvalues:

$$f(\lambda) = \det(A - \lambda I) = \det\frac{1}{2} \begin{pmatrix} \sqrt{3} + 1 - 2\lambda & -2 \\ 1 & \sqrt{3} - 1 - 2\lambda \end{pmatrix} = \lambda^2 - \sqrt{3}\lambda + 1.$$

Using the quadratic equation, we get $\lambda = (\sqrt{3} \pm i)/2$. Next we compute an eigenvector with eigenvalue $\lambda = (\sqrt{3} - i)/2$:

$$A - \frac{\sqrt{3} - i}{2}I = \frac{1}{2} \begin{pmatrix} 1 + i & -2 \\ 1 & -1 + i \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & -1 + i \\ 0 & 0 \end{pmatrix}.$$

The parametric form is x=(1-i)y, so an eigenvector is (1-i,1). The argument of λ is $-\pi/6$ because $\cos(-\pi/6)=\sqrt{3}/2$ and $\sin(-\pi/6)=-1/2$. Also $|\lambda|=\sqrt{3/4+1/4}=1$. So

$$A = PCP^{-1}$$
 where $P = \left(\operatorname{Re} \begin{pmatrix} 1 - i \\ 1 \end{pmatrix} \operatorname{Im} \begin{pmatrix} 1 - i \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$

and C is rotation by $\pi/6$ = the argument of $\overline{\lambda}$.

Geometric Interpretation of Complex Eigenvalues

Another 2×2 example: picture

What does
$$A = \frac{1}{2}\begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix}$$
 do geometrically?

Geometric Interpretation of Complex Eigenvalues With scaling

Let $A=\begin{pmatrix}1&-1\\1&1\end{pmatrix}$. This is $\sqrt{2}$ times the matrix for rotation by $\pi/4$, so the eigenvalues are

$$1\pm i$$
 with eigenvectors $\begin{pmatrix} 1 \\ \mp i \end{pmatrix}$.

We have $|1-i|=\sqrt{2}$ and $P=I_2$, so A= (scale by $\sqrt{2}$) · (rotation by $\pi/4$).

Geometric Interpretation of Complex Eigenvalues With scaling

Let $A=\frac{1}{4}\begin{pmatrix}\sqrt{3}+1 & -2\\ 1 & \sqrt{3}-1\end{pmatrix}$. This is 1/2 times the matrix from a previous example, so the eigenvalues are

$$\frac{\sqrt{3} \pm i}{4}$$
 with eigenvectors $\begin{pmatrix} 1 \mp i \\ 1 \end{pmatrix}$.

We have $|(\sqrt{3}-i)/4|=1/2$, and the argument of $(\sqrt{3}-i)/4$ is still $-\pi/6$. Also $P=\begin{pmatrix}1&-1\\1&0\end{pmatrix}$ as before. So A is similar to (scale by 1/2) · (rotation by $\pi/6$).

Classification of 2×2 Matrices with a Complex Eigenvalue Three pictures

Let A be a real matrix with a complex eigenvalue λ . One way to understand A is to understand the iterates on any given vector: v, Av, A^2v, \ldots

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$\lambda = 1 - i$$
$$|\lambda| > 1$$

$$A = \frac{1}{2} \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix} \quad A = \frac{1}{4} \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix}$$
$$\lambda = \frac{\sqrt{3} - i}{2} \qquad \qquad \lambda = \frac{\sqrt{3} - i}{4}$$
$$|\lambda| = 1 \qquad \qquad |\lambda| < 1$$

Complex Versus Two Real Eigenvalues

Theorem

Let A be a 2×2 matrix with complex eigenvalue $\lambda=a+bi$ (where $b\neq 0$), and let v be an eigenvector. Then

$$A = PCP^{-1}$$

where

$$P = \begin{pmatrix} | & | \\ \operatorname{Re} v & \operatorname{Im} v \\ | & | \end{pmatrix}$$
 and $C = (\operatorname{rotation}) \cdot (\operatorname{scaling}).$

This is very analogous to diagonalization. In the 2×2 case:

Theorem

Let A be a 2 \times 2 matrix with linearly independent eigenvectors v_1, v_2 and associated eigenvalues λ_1, λ_2 . Then

$$A = PDP^{-1}$$

where

scale *x*-axis by λ_1 scale *y*-axis by λ_2

$$P = \begin{pmatrix} | & | \\ v_1 & v_2 \\ | & | \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Picture with 2 Real Eigenvalues

We can draw analogous pictures for a matrix with 2 real eigenvalues.

Example: let $A=\begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix}$. This has eigenvalues $\lambda_1=2$ and $\lambda_2=\frac{1}{2}$, with eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Therefore, $A = PDP^{-1}$ with

$$P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 and $D = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

So A scales the v_1 -direction by 2 and the v_2 -direction by $\frac{1}{2}$.

Picture with 2 Real Eigenvalues

We can also draw a picture from the perspective of repeated multiplication by $\it A$.

$$A = rac{1}{4} egin{pmatrix} 5 & 3 \ 3 & 5 \end{pmatrix} \qquad egin{pmatrix} \lambda_1 = 2 & \lambda_2 = rac{1}{2} \ |\lambda_1| > 1 & |\lambda_1| < 1 \end{pmatrix}$$

Exercise: Draw analogous pictures when $|\lambda_1|, |\lambda_2|$ are any combination of <1,=1,>1.

The Higher-Dimensional Case

Theorem

Let A be a real $n \times n$ matrix. Suppose that for each (real or complex) eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity. Then $A = PCP^{-1}$, where P and C are as follows:

- 1. C is **block diagonal**, where the blocks are 1×1 blocks containing the real eigenvalues (with their multiplicities), or 2×2 blocks containing the matrices $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ for each complex eigenvalue a+bi (with multiplicity).
- 2. The columns of P form bases for the eigenspaces for the real eigenvectors, or come in pairs (Re $v \, \text{Im } v$) for the complex eigenvectors.

For instance, if A is a 3×3 matrix with one real eigenvalue λ_1 with eigenvector v_1 , and one conjugate pair of complex eigenvalues $\lambda_2, \overline{\lambda}_2$ with eigenvectors v_2, \overline{v}_2 , then

$$P = \begin{pmatrix} | & | & | \\ \operatorname{Re} v_2 & \operatorname{Im} v_2 & v_1 \\ | & | & | \end{pmatrix} \quad C = \begin{pmatrix} \boxed{a & b} & 0 \\ -b & a & 0 \\ 0 & 0 & \boxed{\lambda_1} \end{pmatrix}$$

where $\lambda_2 = a + bi$.

The Higher-Dimensional Case Example

Suppose that
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. This acts on the xy -plane by rotation by $\pi/4$ and scaling by $\sqrt{2}$. This acts on the z -axis by scaling by 2. Picture:

Remember, in general A is only *similar* to such a matrix: so the x, y, z axes have to be replaced by the columns of P.