Announcements

November 9

- WeBWorK assignment 5.3 is due on Friday at 6am.
- Midterm 3 will take place in recitation on Friday, 11/18.
- Office hours: today $1-2 \mathrm{pm}$, tomorrow $3: 30-4: 30 \mathrm{pm}$, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Geometric Interpretation of Complex Eigenvalues

Theorem

Let A be a 2×2 matrix with complex eigenvalue $\lambda=a+b i$ (where $b \neq 0$), and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} v \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

If $a+b i=r(\cos \theta+i \sin \theta)$ then

$$
C=\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right)
$$

is a composition of rotation by $-\theta$ and scaling by r.

A 2×2 matrix with complex eigenvalue λ is similar to (rotation by the argument of $\bar{\lambda}$) composed with (scaling by $|\lambda|$). This is multiplication by $\bar{\lambda}$ in $\mathbf{C} \sim \mathbf{R}^{2}$.

Geometric Interpretation of Complex Eigenvalues

2×2 example

Let $A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$: a complex eigenvalue is $\lambda=(1-i) / \sqrt{2}$, with
eigenvector $\binom{1}{i}$. The argument of λ is $-\pi / 4$:

so the argument of $\bar{\lambda}$ is $\pi / 4$. The absolute value of λ is

$$
|\lambda|=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{1}{2}+\frac{1}{2}}=1
$$

Therefore
$A=P C P^{-1} \quad$ where $\quad P=\left(\operatorname{Re}\binom{1}{i} \quad \operatorname{Im}\binom{1}{i}\right)=I_{2}, C=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$.
So we recovered that A is rotation by $\pi / 4$.

Geometric Interpretation of Complex Eigenvalues

Another 2×2 example

What does $A=\frac{1}{2}\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$ do geometrically?
Answer: First we find the eigenvalues:

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det} \frac{1}{2}\left(\begin{array}{cc}
\sqrt{3}+1-2 \lambda & -2 \\
1 & \sqrt{3}-1-2 \lambda
\end{array}\right)=\lambda^{2}-\sqrt{3} \lambda+1
$$

Using the quadratic equation, we get $\lambda=(\sqrt{3} \pm i) / 2$. Next we compute an eigenvector with eigenvalue $\lambda=(\sqrt{3}-i) / 2$:

$$
A-\frac{\sqrt{3}-i}{2} I=\frac{1}{2}\left(\begin{array}{cc}
1+i & -2 \\
1 & -1+i
\end{array}\right) \stackrel{\text { rref }}{\underset{m}{m} \rightarrow}\left(\begin{array}{cc}
1 & -1+i \\
0 & 0
\end{array}\right) .
$$

The parametric form is $x=(1-i) y$, so an eigenvector is $(1-i, 1)$. The argument of λ is $-\pi / 6$ because $\cos (-\pi / 6)=\sqrt{3} / 2$ and $\sin (-\pi / 6)=-1 / 2$. Also $|\lambda|=\sqrt{3 / 4+1 / 4}=1$. So

$$
A=P C P^{-1} \quad \text { where } \quad P=\left(\operatorname{Re}\binom{1-i}{1} \quad \operatorname{Im}\binom{1-i}{1}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

and C is rotation by $\pi / 6=$ the argument of $\bar{\lambda}$.

Geometric Interpretation of Complex Eigenvalues

Another 2×2 example: picture
What does $A=\frac{1}{2}\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$ do geometrically?

rotate by $\pi / 6$

A does the same thing, but with respect to the basis $\mathcal{B}=\left\{\binom{1}{1},\binom{-1}{0}\right\}$:

Geometric Interpretation of Complex Eigenvalues

With scaling

Let $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$. This is $\sqrt{2}$ times the matrix for rotation by $\pi / 4$, so the
eigenvalues are

$$
1 \pm i \quad \text { with eigenvectors } \quad\binom{1}{\mp i} .
$$

We have $|1-i|=\sqrt{2}$ and $P=I_{2}$, so $A=($ scale by $\sqrt{2}) \cdot($ rotation by $\pi / 4)$.

rotate by $\pi / 4$ scale by $\sqrt{2}$

Geometric Interpretation of Complex Eigenvalues

Let $A=\frac{1}{4}\left(\begin{array}{cc}\sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1\end{array}\right)$. This is $1 / 2$ times the matrix from a previous example, so the eigenvalues are

$$
\frac{\sqrt{3} \pm i}{4} \quad \text { with eigenvectors } \quad\binom{1 \mp i}{1}
$$

We have $|(\sqrt{3}-i) / 4|=1 / 2$, and the argument of $(\sqrt{3}-i) / 4$ is still $-\pi / 6$.
Also $P=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ as before. So A is similar to
(scale by $1 / 2$) (rotation by $\pi / 6$).

"rotate around an ellipse"
scale by $1 / 2$

Classification of 2×2 Matrices with a Complex Eigenvalue

 Three picturesLet A be a real matrix with a complex eigenvalue λ. One way to understand A is to understand the iterates on any given vector: $v, A v, A^{2} v, \ldots$.

$$
\begin{array}{rlrl}
A & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) & A & =\frac{1}{2}\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \\
\lambda & =1-i & =\frac{1}{4}\left(\begin{array}{cc}
\sqrt{3}+1 & -2 \\
1 & \sqrt{3}-1
\end{array}\right) \\
|\lambda| & >1 & \lambda & =\frac{\sqrt{3}-i}{2} \\
& |\lambda| & =1 & \lambda
\end{array}
$$

"spirals out"

"rotates around an ellipse"

"spirals in"

Complex Versus Two Real Eigenvalues

Theorem
Let A be a 2×2 matrix with complex eigenvalue $\lambda=a+b i$ (where $b \neq 0$), and let v be an eigenvector. Then

$$
A=P C P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
\operatorname{Re} v & \operatorname{Im} v \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad C=(\text { rotation }) \cdot(\text { scaling }) .
$$

This is very analogous to diagonalization. In the 2×2 case:

Theorem

Let A be a 2×2 matrix with linearly independent eigenvectors v_{1}, v_{2} and associated eigenvalues λ_{1}, λ_{2}. Then

$$
A=P D P^{-1}
$$

where

$$
P=\left(\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

Picture with 2 Real Eigenvalues

We can draw analogous pictures for a matrix with 2 real eigenvalues.
Example: let $A=\left(\begin{array}{cc}\frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4}\end{array}\right)$. This has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=\frac{1}{2}$, with eigenvectors

$$
v_{1}=\binom{1}{1} \quad \text { and } \quad v_{2}=\binom{-1}{1} .
$$

Therefore, $A=P D P^{-1}$ with

$$
P=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
2 & 0 \\
0 & \frac{1}{2}
\end{array}\right) .
$$

So A scales the v_{1}-direction by 2 and the v_{2}-direction by $\frac{1}{2}$.

Picture with 2 Real Eigenvalues

We can also draw a picture from the perspective of repeated multiplication by A.

$$
A=\frac{1}{4}\left(\begin{array}{rl}
5 & 3 \\
3 & 5
\end{array}\right) \quad \begin{aligned}
\lambda_{1} & =2 & \lambda_{2} & =\frac{1}{2} \\
\left|\lambda_{1}\right| & >1 & \left|\lambda_{1}\right| & <1
\end{aligned}
$$

Exercise: Draw analogous pictures when $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|$ are any combination of $<1,=1,>1$.

The Higher-Dimensional Case

Theorem

Let A be a real $n \times n$ matrix. Suppose that for each (real or complex) eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity.
Then $A=P C P^{-1}$, where P and C are as follows:

1. C is block diagonal, where the blocks are 1×1 blocks containing the real eigenvalues (with their multiplicities), or 2×2 blocks containing the matrices $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ for each complex eigenvalue $a+b i$ (with multiplicity).
2. The columns of P form bases for the eigenspaces for the real eigenvectors, or come in pairs ($\operatorname{Re} v \operatorname{Im} v$) for the complex eigenvectors.

For instance, if A is a 3×3 matrix with one real eigenvalue λ_{1} with eigenvector v_{1}, and one conjugate pair of complex eigenvalues $\lambda_{2}, \bar{\lambda}_{2}$ with eigenvectors v_{2}, \bar{v}_{2}, then

$$
P=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\operatorname{Re} v_{2} & \operatorname{Im} v_{2} & v_{1} \\
\mid & \mid & \mid
\end{array}\right) \quad C=\left(\begin{array}{ccc}
a & b & 0 \\
-b & a & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right)
$$

where $\lambda_{2}=a+b i$.

The Higher-Dimensional Case

Example

Suppose that $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. This acts on the $x y$-plane by rotation by $\pi / 4$ and scaling by $\sqrt{2}$. This acts on the z-axis by scaling by 2 . Picture:

Remember, in general A is only similar to such a matrix: so the x, y, z axes have to be replaced by the columns of P.

