Math 1553 Worksheet 9

November 4, 2016

1. In what follows, T is a linear transformation with matrix A. Find the eigenvectors and eigenvalues of A without doing any matrix calculations. (Draw a picture!)
a) $T=$ identity transformation of \mathbf{R}^{3}.
b) $T=$ projection onto the $x z$-plane in \mathbf{R}^{3}.
c) $T=$ counterclockwise rotation by $\pi / 4$ in \mathbf{R}^{2}.
d) $T=$ reflection over $y=2 x$ in \mathbf{R}^{2}.
2. For each of the following matrices A, decide if A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. (Use a calculator to compute the characteristic polynomial and to do row reduction.) Hint: 3 is an eigenvalue of both matrices.

$$
\text { a) } A=\left(\begin{array}{rrr}
8 & 36 & 62 \\
-6 & -34 & -62 \\
3 & 18 & 33
\end{array}\right) \quad \text { b) } A=\left(\begin{array}{rrr}
12 & 68 & 118 \\
-17 & -122 & -216 \\
9 & 66 & 117
\end{array}\right)
$$

3. Consider the following Internet from class:

a) Find the Google Matrix M with damping factor $p=.15$.
b) [Half the class:] Compute the steady state vector of M by row reduction. (Use a calculator.)
b^{\prime}) [Half the class:] Compute the steady state vector of M by starting with a vector v_{0} whose entries sum to 1 , then iteratively multiplying by M. (Use a calculator.)
c) Which is the highest-ranked page?
