Math 1553 Quiz 7
Solutions

1. [5 points] Write a mathematically correct definition of an eigenvector:

 “\(v\) is an eigenvector of an \(n \times n\) matrix \(A\) provided that

 \[v \neq 0\) and \(Av = \lambda v\) for some scalar \(\lambda\).”

2. [5 points] Find all eigenvalues of \(A\), and compute a basis for each eigenspace.

 \[
 A = \begin{pmatrix}
 1 & 2 \\
 0 & 3
 \end{pmatrix}
 \]

 Solution.

 This is an upper-triangular matrix, so the eigenvalues are the diagonal entries 1 and 3. To find a basis for the 1-eigenspace, we compute

 \[
 A - I = \begin{pmatrix}
 0 & 2 \\
 0 & -2
 \end{pmatrix}
 \sim_{\text{rref}} \begin{pmatrix}
 0 & 1 \\
 0 & 0
 \end{pmatrix}.
 \]

 The parametric vector form for the general solution to \((A - I)v = 0\) is \(v = x(1\ 0)\), so a basis for the 1-eigenspace is \(\left\{ (1\ 0) \right\} \).

 To find a basis for the 3-eigenspace, we compute

 \[
 A - 3I = \begin{pmatrix}
 -2 & 2 \\
 0 & 0
 \end{pmatrix}
 \sim_{\text{rref}} \begin{pmatrix}
 1 & -1 \\
 0 & 0
 \end{pmatrix}.
 \]

 The parametric vector form for the general solution to \((A - 3I)v = 0\) is \(v = y(1\ 1)\), so a basis for the 3-eigenspace is \(\left\{ (1\ 1) \right\} \).