
Announcements
November 2

I Read the last two slides of 10/31, or the rest of §5.3 in Lay.
I You’ll be responsible for knowing about non-distinct eigenvalues, but we

won’t cover it in class.

I WeBWorK assignment 5.2 is due on Friday at 6am.

I Your midterms will be returned to you in recitation on Friday.
I The solutions are posted online.
I The score breakdown is on Piazza.

I Midterm 3 will take place in recitation on Friday, 11/18.

I Office hours: today 1–2pm, tomorrow 3:30–4:30pm, and by appointment,
in Skiles 221.

I As always, TAs’ office hours are posted on the website.
I Math Lab is also a good place to visit.



Application

Stochastic matrices



Stochastic Matrices

Definition
A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1. We say A is positive if all of its entries
are positive.

These arise very commonly in modeling of probabalistic phenomena (Markov
chains).

You’ll be responsible for knowing basic facts about
stochastic matrices and the Perron–Frobenius theorem,
but we will not cover them in depth. These slides are
the primary reference; also see §4.9 in Lay.



Stochastic Matrices
Example

Red Box has kiosks all over where you can rent movies. You can return them
to any other kiosk. Let A be the matrix whose ij entry is the probability that a
customer renting a movie from location j returns it to location i . For example,
if there are three locations, maybe

A =



.3 .4 .5
.3 .4 .3
.4 .2 .2


 .

30% probability a movie rented
from location 3 gets returned
to location 2

The columns sum to 1 because there is a 100% chance that the movie will get
returned to some location. This is a positive stochastic matrix.

Note that, if v = (x , y , z) represents the number of movies at the three
locations, then (assuming the number of movies is large), Red Box will have
approximately

Av = A



x
y
z


 =



.3x + .4y + .5z
.3x + .4y + .3z
.4x + .2y + .2z




movies in its three locations the next day. The total number of movies doesn’t
change because the columns sum to 1.



Eigenvalues of Stochastic Matrices

Fact: 1 is an eigenvalue of a stochastic matrix.

Why? If A is stochastic, then 1 is an eigenvalue of AT :


.3 .3 .4
.4 .4 .2
.5 .3 .2






1
1
1


 =




1
1
1


 .

Lemma
A and AT have the same eigenvalues.

Proof: det(A− λI ) = det
(
(A− λI )T

)
= det(AT − λI ), so they have the same

characteristic polynomial.

Note: this doesn’t give a new procedure for finding an eigenvector with
eigenvalue 1; it only shows one exists.



Eigenvalues of Stochastic Matrices
Continued

Fact: if λ is an eigenvalue of a stochastic matrix, then |λ| ≤ 1. Hence 1 is the
largest eigenvalue (in absolute value).

Why? If λ is an eigenvalue of A then it is an eigenvalue of AT .

eigenvector v =




x1
x2
...
xn


 λv = AT v =⇒ λxj =

∑n
i=1 aijxi .

jth entry of AT v

Choose xj with the largest absolute value, so |xi | ≤ |xj | for all i .

|λ| · |xj | =

∣∣∣∣∣
n∑

i=1

aijxi

∣∣∣∣∣ ≤
n∑

i=1

aij · |xi | ≤
n∑

i=1

aij · |xj | = 1 · |xj |,

so |λ| ≤ 1.

positive

≥ |xi |

=
∑

i aij

Better fact: if λ 6= 1 is an eigenvalue of a positive stochastic matrix, then
|λ| < 1.



Diagonalizable Stochastic Matrices

The Red Box matrix A =



.3 .4 .5
.3 .4 .3
.4 .2 .2


 has characteristic polynomial

f (λ) = −λ3 + 0.12λ− 0.02 = −(λ− 1)(λ+ 0.2)(λ− 0.1).

So 1 is indeed the largest eigenvalue. Since A has 3 distinct eigenvalues, it is
diagonalizable:

A = P




1 0 0
0 .1 0
0 0 −.2


P−1.

Hence it is easy to compute the powers of A:

An = P




1 0 0
0 .1n 0
0 0 (−.2)n


P−1.

Let w1,w2,w3 be the columns of P, i.e. the eigenvectors of P with respective
eigenvalues 1, .1,−.2. Let B = {w1,w2,w3}. Recall that P[x ]B = x and
[x ]B = P−1x for any vector x .



Diagonalizable Stochastic Matrices
Continued

[x ]B =



c1
c2
c3


 =⇒ Anx = P




1 0 0
0 .1n 0
0 0 (−.2)n


P−1x

= P




1 0 0
0 .1n 0
0 0 (−.2)n





c1
c2
c3




= P




c1
.1nc2

(−.2)nc3


 = c1w1 + .1nc2w2 + (−.2)nc3w3.

As n becomes large, this approaches c1w1, which is an eigenvector with
eigenvalue 1 (assuming c1 6= 0).

So all vectors get sucked into the 1-eigenspace, which is spanned by

w = w1 =




0.3889
0.3333
0.2778


 .



Diagonalizable Stochastic Matrices
Picture

Start with a vector v0 (the number of movies on the first day), let v1 = Av0
(the number of movies on the second day), let v2 = Av1, etc.

1-eigenspace

w

v0
v1
v2
v3
v4

So vn approaches an eigenvector with eigenvalue 1 as n gets large.



Diagonalizable Stochastic Matrices
Interpretation

If A is the Red Box matrix, and vn is the vector representing the number of
movies in the three locations on day n, then

vn+1 = Avn.

For any starting distribution v0 of videos in red boxes, after enough days, the
distribution v (= vn for n large) is an eigenvector with eigenvalue 1:

Av = v .

Moreover, we know which eigenvector it is: it is the multiple of
w ∼ (0.39, 0.33, 0.28) that represents the same number of videos as in v0.
(Remember the total number of videos never changes.)

Presumably, Red Box really does have to do this kind of analysis to determine
how many videos to put in each box.



Steady State

Definition
A steady state for a stochastic matrix A is an eigenvector w with eigenvalue 1,
such that all entries are positive and sum to 1.

Perron–Frobenius Theorem
If A is a positive stochastic matrix, then it admits a unique steady state vector
w . Moreover, for any vector v0 with entries summing to some number c, the
iterates v1 = Av0, v2 = Av1, . . . , approach cw as n gets large.

The fact that A has an eigenvector with eigenvalue 1 and having positive
entries is very special!

For the Red Box matrix, the steady state was the vector w ∼ (0.39, 0.33, 0.28),
and if you start with 100 total movies, eventually you’ll have
100w = (39, 33, 28) movies in the three locations.

The Theorem says that our analysis of the Red Box matrix works for any
positive stochastic matrix — whether or not it is diagonalizable!



Google’s PageRank

Early internet searching was a pain. Yahoo would scan pages for your search
text, and just list the results with the most occurrences of those words.

Not surprisingly, the more unsavory websites soon learned that by putting the
word “internet” a million times in their pages, they could show up first in every
search for the word “internet”.

Larry Page and Sergey Brin invented a way to rank pages by importance. They
founded Google based on their algorithm.

Here’s how it works. (roughly)

Reference:

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html



The Importance of Being Popular

Idea: each webpage has an associated importance, or rank. This is a positive
number. If page P links to n other pages Q1,Q2, . . . ,Qn, then each Qi should
inherit 1

n
of P’s importance.

I So if a very important page links to your webpage, your webpage is
considered important.

I And if a ton of unimportant pages link to your webpage, then it’s still
important.

I But if only one crappy site links to yours, your page isn’t important.

Random surfer interpretation: a “random surfer” just sits at his computer all
day, randomly clicking on links. The pages he spends the most time on should
be the most important. This turns out to be equivalent to the rank.



The Importance Matrix

Consider the following Internet with only four pages. Links are indicated by
arrows.

A B

C D

1
3

1
3

1
3

1
2

1
21 1

2

1
2

Page A has 3 links, so it passes 1
3

of its importance to pages B,C ,D.
Page B has 2 links, so it passes 1

2
of its importance to pages C ,D.

Page C has one link, so it passes all of its importance to page A.
Page D has 2 links, so it passes 1

2
of its importance to pages A,C .

In terms of matrices, if v = (a, b, c, d) is the vector containing the ranks
a, b, c, d of the pages A,B,C ,D, then




0 0 1 1
2

1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0







a
b
c
d


 =




c + 1
2
d

1
3
a

1
3
a + 1

2
b + 1

2
d

1
3
a + 1

2
b


 =




a
b
c
d




importance
matrix: ij entry is
importance page j
passes to page i



The 25 Billion Dollar Eigenvector

Observations:

I The importance matrix is a stochastic matrix! The columns each contain
1/n (n = number of links), n times.

I The rank vector is an eigenvector with eigenvalue 1!

Random surfer interpretation: If a random surfer has probability (a, b, c, d) to
be on page A,B,C ,D, respectively, then after clicking on a random link, the
probability he’ll be on each page is




0 0 1 1
2

1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0







a
b
c
d


 =




c + 1
2
d

1
3
a

1
3
a + 1

2
b + 1

2
d

1
3
a + 1

2
b


 .

The rank vector is a steady state for the random surfer: it’s the probability
vector (a, b, c, d) such that, after clicking on a random link, he’ll have the
same probability of being on each page.

So, the important (high-ranked) pages are those where a random surfer will
end up most often.



Problems with the Importance Matrix
Dangling Pages

Observation: the importance matrix is not positive: it’s only nonnegative. So
we can’t apply the Perron–Frobenius theorem. Does this cause problems? Yes!

Consider the following Internet:

A

C

B

1

1

The importance matrix is




0 0 0
0 0 0
1 1 0


. This has characteristic polynomial

f (λ) = det



−λ 0 0
0 −λ 0
1 1 −λ


 = −λ3.

So 1 is not an eigenvalue at all: there is no rank vector! (It is not stochastic.)



Problems with the Importance Matrix
Disconnected Internet

Consider the following Internet:

D

A B C

E

1

1

1
2

1
21

2

1
2

1
2

1
2

The importance matrix is




0 1 0 0 0
1 0 0 0 0
0 0 0 1

2
1
2

0 0 1
2

0 1
2

0 0 1
2

1
2

0



. This has linearly independent

eigenvectors




1
1
0
0
0




and




0
0
1
1
1




, both with eigenvalue 1. So there is more than

one rank vector!



The Google Matrix

Here is Page and Brin’s solution. Fix p in (0, 1), called the damping factor. (A
typical value is p = 0.15.) The Google matrix is

M = (1− p) · A + p · B where B =
1

N




1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


 ,

N is the total number of pages, and A is the importance matrix.

In the random surfer interpretation, this matrix M says: with probability p, our
surfer will surf to a completely random page; otherwise, he’ll click a random
link.

Lemma
The Google matrix is a positive stochastic matrix.

Hence by the Perron–Frobenius theorem, there is a unique eigenvector with
eigenvalue 1. It has positive entries. This is the PageRank vector!

The hard part is calculating it: Mathematica doesn’t like matrices with
dimensions (1 gazillion)×(1 gazillion).


