Announcements

- WeBWorK assignment 5.2 is due on Friday at 6am.
- Your midterms will be returned to you in recitation on Friday.
- The solutions are posted online.
- The score breakdown is on Piazza.
- Midterm 2 will take place in recitation on Friday, 11/18.
- Office hours: Wednesday 1-2pm, Thursday 3:30-4:30pm, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Section 5.3

Diagonalization

Motivation

Many real-word linear algebra problems have the form:

$$
v_{1}=A v_{0} \quad v_{2}=A v_{1}=A^{2} v_{0} \quad v_{3}=A v_{2}=A^{3} v_{0} \quad \ldots \quad v_{n}=A v_{n-1}=A^{n} v_{0}
$$

The question is, what happens to v_{n} as $n \rightarrow \infty$?
Our toy example about rabbit populations had this form.

- Taking powers of diagonal matrices is easy!
- Taking powers of diagonalizable matrices is still easy!
- Figuring out if a matrix is diagonalizable is an eigenvalue problem.

Powers of Diagonal Matrices

If A is diagonal, then A^{n} is also diagonal; its diagonal entries are the nth powers of the diagonal entries of A :

$$
\begin{aligned}
& D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \quad D^{2}=\left(\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right) \quad D^{3}=\left(\begin{array}{cc}
8 & 0 \\
0 & 27
\end{array}\right) \quad \ldots \quad D^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right) . \\
& D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right) \quad D^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{9}
\end{array}\right) \quad D^{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{8} & 0 \\
0 & 0 & \frac{1}{27}
\end{array}\right) \\
& \ldots \quad D^{n}=\left(\begin{array}{ccc}
-1)^{n} & 0 & 0 \\
0 & \frac{1}{2^{n}} & 0 \\
0 & 0 & \frac{1}{3^{n}}
\end{array}\right)
\end{aligned}
$$

Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$. Compute A^{n}.
In $\S 5.2$ lecture we saw that A was similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { where } \quad P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) .
$$

Then

$$
\begin{aligned}
A^{2} & =\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1} \\
A^{3} & =\left(P D P^{-1}\right)\left(P D^{2} P^{-1}\right)=P D\left(P^{-1} P\right) D^{2} P^{-1}=P D I D^{2} P^{-1}=P D^{3} P^{-1} \\
& \vdots \\
A^{n} & =P D^{n} P^{-1}
\end{aligned}
$$

Therefore

$$
A^{n}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
2^{n+1}-3^{n} & -2^{n+1}+2 \cdot 3^{n} \\
2^{n}-3^{n} & -2^{n}+2 \cdot 3^{n}
\end{array}\right)
$$

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

Important

$$
\begin{aligned}
& \text { If } A=P D P^{-1} \text { for } D=\left(\begin{array}{cccc}
d_{11} & 0 & \cdots & 0 \\
0 & d_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}
\end{array}\right) \text { then } \\
& A^{k}=P D^{K} P^{-1}=P\left(\begin{array}{cccc}
d_{11}^{k} & 0 & \cdots & 0 \\
0 & d_{22}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}^{k}
\end{array}\right) P^{-1} .
\end{aligned}
$$

Diagonalization

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Corollary \longleftarrow a theorem that follows easily from another theorem
An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent. We will see later that a diagonalizable matrix need not have n distinct eigenvalues though.

Diagonalization

Example

Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$. The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
-1 & 4-\lambda
\end{array}\right)=\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3)
$$

Therefore the eigenvalues are 2 and 3 . Let's compute some eigenvectors:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right) x=0 \underset{\sim m \sim}{\text { rref }}\left(\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=2 y$, so $v_{1}=\binom{2}{1}$ is an eigenvector with eigenvalue 2 .

$$
(A-3 I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
-2 & 2 \\
-1 & 1
\end{array}\right) x=0 \underset{\sim m \rightarrow}{\text { rref }}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=y$, so $v_{2}=\binom{1}{1}$ is an eigenvector with eigenvalue 3 .
The eigenvectors v_{1}, v_{2} are linearly independent, so the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

Diagonalization

Another example

Let $A=\left(\begin{array}{lll}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$. The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2=-(\lambda-1)^{2}(\lambda-2)
$$

Therefore the eigenvalues are 1 and 2 , with respective multiplicities 2 and 1 . Let's compute some eigenvectors:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{lll}
3 & -3 & 0 \\
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right) x=0 \underset{\sim m \rightarrow}{\operatorname{rref}}\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric vector form is

$$
\left\{\begin{array}{l}
x=y \\
y=y \\
z=
\end{array} \quad \Longrightarrow \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

Hence a basis for the 1-eigenspace is

$$
\mathcal{B}_{1}=\left\{v_{1}, v_{2}\right\} \quad \text { where } \quad v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Diagonalization

Another example, continued

Now let's compute an eigenvector with eigenvalue 2:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ccc}
2 & -3 & 0 \\
2 & -3 & 0 \\
1 & -1 & -1
\end{array}\right) x=0 \underset{\sim m m}{\operatorname{rref}}\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=3 z, y=2 z$, so an eigenvector with eigenvalue 2 is

$$
v_{3}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

The eigenvectors v_{1}, v_{2}, v_{3} are linearly independent: v_{1}, v_{2} form a basis for the 1-eigenspace, and v_{3} is not contained in the 1-eigenspace. Therefore the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{lll}
1 & 0 & 3 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Note that in this case, there were three linearly independent eigenvectors, but only two distinct eigenvalues.

Diagonalization

A non-diagonalizable matrix

Example

Show that $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.
This is an upper-triangular matrix, so the only eigenvalue is 1 . Let's compute the 1-eigenspace:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x=0
$$

This is row reduced, but has only one free variable x; a basis for the 1-eigenspace is $\left\{\binom{1}{0}\right\}$. So all eigenvectors of A are multiples of $\binom{1}{0}$.

Conclusion: A has only one linearly independent eigenvector, so by the "only if" part of the diagonalization theorem, A is not diagonalizable.

Which of the following matrices are diagonalizable?
A. $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
B. $\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$
C. $\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$
D. $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Matrix \mathbf{A} is not diagonalizable: its only eigenvalue is 1 , and its 1 -eigenspace is spanned by $\binom{1}{0}$. Similarly, matrix \mathbf{C} is not diagonalizable.

Matrix B is diagonalizable because it is a 2×2 matrix with distinct eigenvalues. Matrix \mathbf{D} is already diagonal!

Diagonalization

Procedure

How to diagonalize a matrix A :

1. Find the eigenvalues of A using the characteristic polynomial.
2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ-eigenspace.
3. If there are fewer than n total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ}, then the matrix is not diagonalizable.
4. Otherwise, the n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in your eigenspace bases are linearly independent, and $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where λ_{i} is the eigenvalue for v_{i}.

Diagonalization

Proof

Why is the Diagonalization Theorem true?
A diagonalizable implies A has n linearly independent eigenvectors: Suppose $A=P D P^{-1}$, where D is diagonal with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. They are linearly independent because P is invertible. So $P e_{i}=v_{i}$, hence $P^{-1} v_{i}=e_{i}$.

$$
A v_{i}=P D P^{-1} v_{i}=P D e_{i}=P\left(\lambda_{i} e_{i}\right)=\lambda_{i} P e_{i}=\lambda_{i} v_{i}
$$

Hence v_{i} is an eigenvector of A with eigenvalue λ_{i}. So the columns of P form n linearly independent eigenvectors of A, and the diagonal entries of D are the eigenvalues.
A has n linearly independent eigenvectors implies A is diagonalizable: Suppose A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let P be the invertible matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. Let $D=P^{-1} A P$.

$$
D e_{i}=P^{-1} A P e_{i}=P^{-1} A v_{i}=P^{-1}\left(\lambda_{i} v_{i}\right)=\lambda_{i} P^{-1} v_{i}=\lambda_{i} e_{i}
$$

Hence D is diagonal, with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Solving $D=P^{-1} A P$ for A gives $A=P D P^{-1}$.

Non-Distinct Eigenvalues

Theorem

Let A be an $n \times n$ matrix. Let:

- $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of A,
- $a_{1}, a_{2}, \ldots, a_{k}$ be the algebraic multiplicities of the eigenvalues, and
- $d_{1}, d_{2}, \ldots, d_{k}$ be the dimensions of the eigenspaces.

Then:

1. $1 \leq d_{i} \leq a_{i}$ for all i, and
2. A is diagonalizable if and only if $d_{1}+d_{2}+\cdots+d_{k}=n$; equivalently,
3. A is diagonalizable if and only if $d_{i}=e_{i}$ for all i, and the characteristic polynomial for A has all real roots.

The number d_{i}, i.e. the dimension of the λ_{i}-eigenspace, is called the geometric multiplicity of the eigenvalue λ_{i}. So assertion 1 states that the geometric multiplicity is bounded by the algebraic multiplicity.
Assertion 2 was used in the diagonalization procedure before: it says that there are n vectors in the bases of all the eigenspaces.
Assertion 3 says that, if A is diagonalizable, then the geometric multiplicities must equal the algebraic multiplicities.

Non-Distinct Eigenvalues

Examples

If A has n distinct eigenvalues, then $k=n$ and $d_{i}=a_{i}=1$ for all i, so the matrix is diagonalizable. For example, $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$ has eigenvalues 2 and 3 , hence is diagonalizable.
The matrix $A=\left(\begin{array}{ccc}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$ has characteristic polynomial
$f(\lambda)=-(\lambda-1)^{2}(\lambda-2)$. If $\lambda_{1}=1$ and $\lambda_{2}=2$, then $a_{1}=2$ and $a_{2}=1$. Since the 1 -eigenspace has dimension 2 , we know $a_{1}=d_{1}=2$. Automatically $a_{2}=d_{2}=1$. So $d_{1}=a_{1}$ and $d_{2}=a_{2}$, and $f(\lambda)$ has all real roots, so A is diagonalizable.

The matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has characteristic polynomial $f(\lambda)=(\lambda-1)^{2}$.
Hence there is one eigenvalue $\lambda_{1}=1$, and $a_{1}=2$. But the 1-eigenspace is spanned by $\binom{1}{0}$, so $d_{1}=1<2=a_{1}$. Hence A is not diagonalizable.

