
Announcements
October 26

I WeBWorK assignment 5.1 is due Monday at 6am.

I Midterm 2 will take place in recitation this Friday, 10/28.
I This is the day before the withdrawal deadline.
I It covers §§2.1–2.3, 2.8, 2.9, 3.1, and 3.2.

I A practice exam has been posted on the website.
I I’ll post the solutions later today.

I There are study tips on Piazza.

I Extra office hours this week: today 1–3pm, Thursday 2:30–4:30pm, and
by appointment, in Skiles 221.

I As always, TAs’ office hours are posted on the website.
I Math Lab is also a good place to visit.



Review for Midterm 2

Selected Topics



Matrix Multiplication/Inversion and Linear Transformations

Let T : Rn → Rm and U : Rp → Rn be linear transformations with matrices A
and B. The composition is the linear transformation

T ◦ U : Rp → Rm defined by T ◦ U(x) = T (U(x)).

Rp

x

Rn

U(x)

Rm

T ◦ U(x)

U T

T ◦ U

Fact: The matrix for T ◦ U is AB.

Now let T : Rn → Rn be an invertible linear transformation. This means there
is a linear transformation T−1 : Rn → Rn such that T ◦ T−1(x) = x for all x in
Rn. Equivalently, it means T is one-to-one and onto.

Fact: If A is the matrix for T , then A−1 is the matrix for T−1.



Matrix Multiplication/Inversion and Linear Transformations
Example

Let T : R2 → R2 scale the x-axis by 2, and let U : R2 → R2 be
counterclockwise rotation by 90◦. Their matrices are:

A =

(
2 0
0 1

)
B =

(
0 −1
1 0

)
.

The composition T ◦ U is: first rotate counterclockwise by 90◦, then scale the
x-axis by 2. The matrix for T ◦ U is

AB =

(
2 0
0 1

)(
0 −1
1 0

)
=

(
0 −2
1 0

)
.

The inverse of U rotates clockwise by 90◦. The matrix for U−1 is

B−1 =

(
0 1
−1 0

)
.



Solving Linear Systems by Inverting Matrices

If A is invertible, then

Ax = b ⇐⇒ A−1(Ax) = A−1b ⇐⇒ x = A−1b.

If A is invertible, then Ax = b has exactly one solution
for any b, namely, x = A−1b.

Important

Example

Solve

(
2 1
1 3

)
x =

(
1
4

)
.

Answer:

x =

(
2 1
1 3

)−1(
1
4

)
=

1

2 · 3− 1 · 1

(
3 −1
−1 2

)(
1
4

)
=

1

5

(
−1
7

)
.



Elementary Matrices

Definition
An elementary matrix is a square matrix E which differs from In by one row
operation.

There are three kinds:




1 0 0
0 2 0
0 0 1




scaling 


1 0 0
2 1 0
0 0 1




row replacement 


0 1 0
1 0 0
0 0 1




swap

Fact: if E is the elementary matrix for a row operation, then EA differs from A
by the same row operation.

A =

(
1 0 0
2 3 4

)
B =

(
1 0 0
0 3 4

)

You get B by subtracting 2× the first row of A from the second row.

B = EA where E =

(
1 0
−2 1

) (
subtract 2× the first row
of I2 from the second row

)
.



The Inverse of an Elementary Matrix

Fact: the inverse of an elementary matrix E is the elementary matrix obtained
by doing the opposite row operation to In.




1 0 0
0 2 0
0 0 1




-1
scale R2 by 2 


1 0 0
0 1/2 0
0 0 1




scale R2 by 1/2

=




1 0 0
2 1 0
0 0 1




-1
add 2R1 to R2 


1 0 0
−2 1 0
0 0 1




subtract 2R1 from R2

=




0 1 0
1 0 0
0 0 1




-1
swap R1 and R2 


0 1 0
1 0 0
0 0 1




swap R1 and R2

=

If A is invertible, then there are a sequence of row operations taking A to In:

ErEr−1 · · ·E2E1A = In.

Taking inverses (note the order!):

A = E−1
1 E−1

2 · · ·E−1
r In = E−1

1 E−1
2 · · ·E−1

r .



The Invertible Matrix Theorem
For reference

The Invertible Matrix Theorem
Let A be a square n × n matrix, and let T : Rn → Rn be the linear
transformation T (x) = Ax . The following statements are equivalent.

1. A is invertible.

2. T is invertible.

3. A is row equivalent to In.

4. A has n pivots.

5. Ax = 0 has only the trivial solution.

6. The columns of A are linearly independent.

7. T is one-to-one.

8. Ax = b is consistent for all b in Rn.

9. The columns of A span Rn.

10. T is onto.

11. A has a left inverse (there exists B such that BA = In).

12. A has a right inverse (there exists B such that AB = In).

13. AT is invertible.

14. The columns of A form a basis for Rn.

15. ColA = Rn.

16. dim ColA = n.

17. rankA = n.

18. NulA = {0}.
19. dim NulA = 0.

Learn it!



Subspaces

Definition
A subspace of Rn is a subset V of Rn satisfying:

1. The zero vector is in V . “not empty”

2. If u and v are in V , then u + v is also in V . “closed under addition”

3. If u is in V and c is in R, then cu is in V . “closed under × scalars”

Examples:

I Any span.

I The column space of a matrix:

ColA = Span{columns of A}.

I The null space of a matrix:

NulA =
{
x | Ax = 0

}
.



Subspaces
Example

Example

Is V =







x
y
z


 in R3

∣∣ x + y = 0



 a subspace?

1. Since 0 + 0 = 0, the zero vector is in V .

2. Let



x
y
z


 and



x ′

y ′

z ′


 be arbitrary vectors in V . So x + y = 0 and

x ′ + y ′ = 0. We have to check if



x
y
z


+



x ′

y ′

z ′


 =



x + x ′

y + y ′

z + z ′


 is in V , i.e.,

if (x + x ′) + (y + y ′) = 0.

(x + x ′) + (y + y ′) = (x + y) + (x ′ + y ′) = 0 + 0 = 0.

So condition (2) holds.



Subspaces
Example, continued

Example

Is V =







x
y
z


 in R3

∣∣ x + y = 0



 a subspace?

3. Let



x
y
z


 be in V and let c be a scalar. So x + y = 0. We have to check

if c



x
y
z


 =



cx
cy
cz


 is in V , i.e. if cx + cy = 0.

cx + cy = c(x + y) = c · 0 = 0.

So condition (3) holds.

Since conditions (1), (2), and (3) hold, V is a subspace.



Subspaces
Example

Example

Is V =







x
y
z


 in R3

∣∣ sin(x) = 0



 a subspace?

1. Since sin(0) = 0, the zero vector is in V .

3. Let



x
y
z


 be in V and let c be a scalar. So sin(x) = 0. We have to check

if c



x
y
z


 =



cx
cy
cz


 is in V , i.e., if sin(cx) = 0. This is not true in general:

take x = π and c = 1
2
. Then sin(cx) = sin(π/2) = 1. So



π
0
0


 is in V

but
1

2



π
0
0


 is not.

Since condition (3) fails, V is not a subspace.



Basis of a Subspace

Definition
Let V be a subspace of Rn. A basis of V is a set of vectors {v1, v2, . . . , vm} in
Rn such that:

1. V = Span{v1, v2, . . . , vm}, and

2. {v1, v2, . . . , vm} is linearly independent.

The number of vectors in a basis is the dimension of V , and is written dimV .

To check that B is a basis for V , you have to check two things:
1. B spans V .

2. B is linearly independent.
This is what it means to justify the statement “B is a basis for V .”

Basis Theorem
Let V be a subspace of dimension m. Then:

I Any m linearly independent vectors in V form a basis for V .

I Any m vectors that span V form a basis for V .

So if you already know the dimension of V , you only have to check one.



Basis of a Subspace
Example

Verify that








1
−1
0


 ,




0
0
1





 is a basis for V =







x
y
z


 in R3

∣∣ x + y = 0



.

0. In V : both are in V because 1 + (−1) = 0 and 0 + 0 = 0.

1. Span: If



x
y
z


 is in V , then y = −x , so we can write it as



x
y
z


 =




x
−x
z


 = x




1
−1
0


+ z




0
0
1


 .

2. Linearly independent:

x




1
−1
0


+ y




0
0
1


 = 0 =⇒




x
−x
y


 =




0
0
0


 =⇒ x = y = 0.

If we knew a priori that dimV = 2, then we would only have to check 0, then 1
or 2.



Bases of ColA and NulA

A =




1 2 0 −1
−2 −3 4 5

2 4 0 −2


 rref




1 0 −8 −7
0 1 4 3
0 0 0 0




pivot columns in rrefpivot columns = basis

So a basis for ColA is








1
−2

2


 ,




2
−3

4





. A vector in ColA :




1
−2

2


.

Parametric vector form for solutions to Ax = 0:

x = x3




8
−4
1
0


+ x4




7
−3
0
1




basis of
NulA








8
−4
1
0


 ,




7
−3
0
1








A vector in NulA: any solution to Ax = 0, e.g., x =




8
−4
1
0


.



Rank Theorem

Rank Theorem
If A is an m × n matrix, then

rankA + dim NulA = n = the number of columns of A.

1 2 0 −1
−2 −3 4 5

2 4 0 −2





 1 0 −8 −7

0 1 4 3
0 0 0 0

( )
rref

A =

basis of ColA free variables

In this case, rankA = 2 and dim NulA = 2, and 2 + 2 = 4, which is the number
of columns of A.



Determinants
Ways to compute them

1. Special formulas for 2× 2 and 3× 3 matrices.

2. For [upper or lower] triangular matrices:

detA = (product of diagonal entries).

3. Cofactor expansion along any row or column:

detA =
n∑

j=1

aijCij for any fixed i

detA =
n∑

i=1

aijCij for any fixed j

Start here for matrices with a row or column with lots of zeros.

4. By row reduction without scaling:

det(A) = (−1)#swaps(product of diagonal entries in REF
)

This is fastest for big and complicated matrices.

5. Two of the above. (The cofactor formula is recursive.)



Determinants
Defining properties

Definition
The determinant is a function

det : {square matrices} −→ R

with the following defining properties:

1. det(In) = 1

2. If we do a row replacement on a matrix (add a multiple of one row to
another), the determinant does not change.

3. If we swap two rows of a matrix, the determinant scales by −1.

4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use row
replacement and row swaps. Then you never have to worry about scaling by
the inverse.



Determinants
Magical properties

1. There is one and only one function det : {square matrices} → R satisfying
the defining properties (1)–(4).

2. A is invertible if and only if det(A) 6= 0.

3. If we row reduce A without row scaling, then

det(A) = (−1)#swaps(product of diagonal entries in REF
)

4. The determinant can be computed using any of the 2n cofactor
expansions.

5. det(AB) = det(A) det(B) and det(A−1) = det(A)−1.

6. det(A) = det(AT )

7. | det(A)| is the volume of the parallelepiped defined by the columns of A.

8. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)

9. The determinant is multi-linear.



Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then T (S) is the
parallelepiped defined by the columns of A, since the columns of A are
T (e1),T (e2), . . . ,T (en). In this case, Property 8 is the same as Property 7.

e1

e2 S

vol(S) = 1

T

A =

(
1 1
−1 1

)

det(A) = 2

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is
scaled by | det(A)|; then you use calculus to reduce to the previous situation!

S
T

vol(T (S)) = 2 vol(S)

T (S)


