Announcements

- WeBWorK assignment 5.1 is due Monday at 6am.
- Midterm 2 will take place in recitation this Friday, 10/28.
- This is the day before the withdrawal deadline.
- It covers §§2.1-2.3, 2.8, 2.9, 3.1, and 3.2.
- A practice exam has been posted on the website.
- I'll post the solutions later today.
- There are study tips on Piazza.
- Extra office hours this week: today $1-3 \mathrm{pm}$, Thursday 2:30-4:30pm, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Review for Midterm 2

Selected Topics

Matrix Multiplication/Inversion and Linear Transformations

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be linear transformations with matrices A and B. The composition is the linear transformation

$$
T \circ U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T \circ U(x)=T(U(x))
$$

Fact: The matrix for $T \circ U$ is $A B$.

Now let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be an invertible linear transformation. This means there is a linear transformation $T^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $T \circ T^{-1}(x)=x$ for all x in \mathbf{R}^{n}. Equivalently, it means T is one-to-one and onto.

Fact: If A is the matrix for T, then A^{-1} is the matrix for T^{-1}.

Matrix Multiplication/Inversion and Linear Transformations

Example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ scale the x-axis by 2 , and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be counterclockwise rotation by 90°. Their matrices are:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The composition $T \circ U$ is: first rotate counterclockwise by 90°, then scale the x-axis by 2 . The matrix for $T \circ U$ is

$$
A B=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right)
$$

The inverse of U rotates clockwise by 90°. The matrix for U^{-1} is

$$
B^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Solving Linear Systems by Inverting Matrices

If A is invertible, then

$$
A x=b \Longleftrightarrow A^{-1}(A x)=A^{-1} b \Longleftrightarrow x=A^{-1} b
$$

Important
If A is invertible, then $A x=b$ has exactly one solution for any b, namely, $x=A^{-1} b$.

Example

Solve $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) x=\binom{1}{4}$.
Answer:

$$
x=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)^{-1}\binom{1}{4}=\frac{1}{2 \cdot 3-1 \cdot 1}\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right)\binom{1}{4}=\frac{1}{5}\binom{-1}{7}
$$

Elementary Matrices

Definition

An elementary matrix is a square matrix E which differs from I_{n} by one row operation.
There are three kinds:

$$
\begin{array}{ccc}
\text { scaling } & \text { row replacement } & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Fact: if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 4
\end{array}\right) \quad \text { mu } B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 4
\end{array}\right)
$$

You get B by subtracting $2 \times$ the first row of A from the second row.

$$
B=E A \quad \text { where } \quad E=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \quad\binom{\text { subtract } 2 \times \text { the first row }}{\text { of } I_{2} \text { from the second row }}
$$

The Inverse of an Elementary Matrix

Fact: the inverse of an elementary matrix E is the elementary matrix obtained by doing the opposite row operation to I_{n}.

$$
\begin{aligned}
& \text { scale } R_{2} \text { by } 2 \text { scale } R_{2} \text { by } 1 / 2 \text { add } 2 R_{1} \text { to } R_{2} \text { subtract } 2 R_{1} \text { from } R_{2} \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { swap } R_{1} \text { and } R_{2} \quad \text { swap } R_{1} \text { and } R_{2} \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

If A is invertible, then there are a sequence of row operations taking A to I_{n} :

$$
E_{r} E_{r-1} \cdots E_{2} E_{1} A=I_{n}
$$

Taking inverses (note the order!):

$$
A=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1} I_{n}=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1}
$$

The Invertible Matrix Theorem

For reference

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. A is row equivalent to I_{n}.
4. A has n pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of A are linearly independent.
7. T is one-to-one.
8. $A x=b$ is consistent for all b in \mathbf{R}^{n}.
9. The columns of A span \mathbf{R}^{n}.
10. T is onto.
11. A has a left inverse (there exists B such that $B A=I_{n}$).
12. A has a right inverse (there exists B such that $A B=I_{n}$).
13. A^{T} is invertible.
14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

Learn it!

Subspaces

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V.
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.

$$
\begin{aligned}
& \text { "not empty" } \\
& \text { "closed under addition" } \\
& \text { "closed under } \times \text { scalars" }
\end{aligned}
$$

Examples:

- Any span.
- The column space of a matrix:

$$
\operatorname{Col} A=\operatorname{Span}\{\text { columns of } A\}
$$

- The null space of a matrix:

$$
\operatorname{Nul} A=\{x \mid A x=0\}
$$

Subspaces

Example

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$ a subspace?

1. Since $0+0=0$, the zero vector is in V.
2. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)$ be arbitrary vectors in V. So $x+y=0$ and

$$
x^{\prime}+y^{\prime}=0 \text {. We have to check if }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{l}
x+x^{\prime} \\
y+y^{\prime} \\
z+z^{\prime}
\end{array}\right) \text { is in } V \text {, i.e., }
$$

$$
\text { if }\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=0
$$

$$
\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=(x+y)+\left(x^{\prime}+y^{\prime}\right)=0+0=0
$$

So condition (2) holds.

Subspaces

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$ a subspace?
3. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ be in V and let c be a scalar. So $x+y=0$. We have to check

$$
\begin{aligned}
& \text { if } c\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
c x \\
c y \\
c z
\end{array}\right) \text { is in } V \text {, i.e. if } c x+c y=0 \\
& c x+c y=c(x+y)=c \cdot 0=0
\end{aligned}
$$

So condition (3) holds.
Since conditions (1), (2), and (3) hold, V is a subspace.

Subspaces

Example

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid \sin (x)=0\right\}$ a subspace?

1. Since $\sin (0)=0$, the zero vector is in V.
2. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ be in V and let c be a scalar. So $\sin (x)=0$. We have to check
if $c\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}c x \\ c y \\ c z\end{array}\right)$ is in V, i.e., if $\sin (c x)=0$. This is not true in general:
take $x=\pi$ and $c=\frac{1}{2}$. Then $\sin (c x)=\sin (\pi / 2)=1$. So $\left(\begin{array}{l}\pi \\ 0 \\ 0\end{array}\right)$ is in V but $\frac{1}{2}\left(\begin{array}{l}\pi \\ 0 \\ 0\end{array}\right)$ is not.

Since condition (3) fails, V is not a subspace.

Basis of a Subspace

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in \mathbf{R}^{n} such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.

To check that \mathcal{B} is a basis for V, you have to check two things:

1. \mathcal{B} spans V.
2. \mathcal{B} is linearly independent.

This is what it means to justify the statement " \mathcal{B} is a basis for V."

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

So if you already know the dimension of V, you only have to check one.

Basis of a Subspace

Example

Verify that $\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$.
0 . In V : both are in V because $1+(-1)=0$ and $0+0=0$.

1. Span: If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in V, then $y=-x$, so we can write it as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \\
-x \\
z
\end{array}\right)=x\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

2. Linearly independent:

$$
x\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+y\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0 \Longrightarrow\left(\begin{array}{c}
x \\
-x \\
y
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow x=y=0 .
$$

If we knew a priori that $\operatorname{dim} V=2$, then we would only have to check 0 , then 1 or 2 .

Bases of $\operatorname{Col} A$ and $\operatorname{Nul} A$

$$
A=\left(\begin{array}{rrrr}
1 \\
-2 & - & \begin{array}{r}
2 \\
3 \\
2
\end{array} & 0 \\
4 & 4 & 5 \\
4 & 0 & -2
\end{array}\right) \underset{\sim}{\text { rref }}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

pivot columns $=$ basis <mumm pivot columns in rref
So a basis for $\operatorname{Col} A$ is $\left\{\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{r}2 \\ -3 \\ 4\end{array}\right)\right\}$. A vector in $\operatorname{Col} A:\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)$.
Parametric vector form for solutions to $A x=0$:

$$
x=x_{3}\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right) \quad \begin{gathered}
\text { basis of } \\
\text { Nul } A
\end{gathered}\left\{\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

A vector in $\operatorname{Nul} A$: any solution to $A x=0$, e.g., $x=\left(\begin{array}{c}8 \\ -4 \\ 1 \\ 0\end{array}\right)$.

Rank Theorem

Rank Theorem

If A is an $m \times n$ matrix, then

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=\text { the number of columns of } A .
$$

$$
A=(\underbrace{\left.\left.\begin{array}{r}
1 \\
-2 \\
2
\end{array} \begin{array}{rrr}
2 \\
-3 & 0 & -1 \\
4 & 5 & -2
\end{array}\right) \underset{\text { free variables }}{\text { rref }} \underset{r}{1} \begin{array}{rrrr}
1 & 0 & -8 \\
0 & 1 & -7 \\
0 & 0 & 0 \\
0 \\
0
\end{array}\right)}_{\text {basis of } \operatorname{Col} A}
$$

In this case, $\operatorname{rank} A=2$ and $\operatorname{dim} \operatorname{Nul} A=2$, and $2+2=4$, which is the number of columns of A.

Determinants

Ways to compute them

1. Special formulas for 2×2 and 3×3 matrices.
2. For [upper or lower] triangular matrices:

$$
\operatorname{det} A=\text { (product of diagonal entries). }
$$

3. Cofactor expansion along any row or column:

$$
\begin{aligned}
\operatorname{det} A & =\sum_{j=1}^{n} a_{i j} C_{i j} \text { for any fixed } i \\
\operatorname{det} A & =\sum_{i=1}^{n} a_{i j} C_{i j} \text { for any fixed } j
\end{aligned}
$$

Start here for matrices with a row or column with lots of zeros.
4. By row reduction without scaling:

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }} \text { (product of diagonal entries in REF) }
$$

This is fastest for big and complicated matrices.
5. Two of the above. (The cofactor formula is recursive.)

Determinants

Definition

The determinant is a function

$$
\text { det: }\{\text { square matrices }\} \longrightarrow \mathbf{R}
$$

with the following defining properties:

1. $\operatorname{det}\left(I_{n}\right)=1$
2. If we do a row replacement on a matrix (add a multiple of one row to another), the determinant does not change.
3. If we swap two rows of a matrix, the determinant scales by -1 .
4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use row replacement and row swaps. Then you never have to worry about scaling by the inverse.

Determinants

1. There is one and only one function det: $\{$ square matrices $\} \rightarrow \mathbf{R}$ satisfying the defining properties (1)-(4).
2. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3. If we row reduce A without row scaling, then

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }} \text { (product of diagonal entries in REF) }
$$

4. The determinant can be computed using any of the $2 n$ cofactor expansions.
5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
6. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
7. $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
8. If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)
9. The determinant is multi-linear.

Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then $T(S)$ is the parallelepiped defined by the columns of A, since the columns of A are $T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)$. In this case, Property 8 is the same as Property 7.

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is scaled by $|\operatorname{det}(A)| ;$ then you use calculus to reduce to the previous situation!

