October 26

- ▶ WeBWorK assignment 5.1 is due **Monday** at 6am.
- ▶ Midterm 2 will take place in recitation this Friday, 10/28.
 - This is the day before the withdrawal deadline.
 - ▶ It covers §§2.1–2.3, 2.8, 2.9, 3.1, and 3.2.
- ▶ A practice exam has been posted on the website.
 - I'll post the solutions later today.
- ▶ There are study tips on Piazza.
- Extra office hours this week: today 1–3pm, Thursday 2:30–4:30pm, and by appointment, in Skiles 221.
 - As always, TAs' office hours are posted on the website.
 - Math Lab is also a good place to visit.

Review for Midterm 2

Selected Topics

Matrix Multiplication/Inversion and Linear Transformations

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ and $U: \mathbf{R}^p \to \mathbf{R}^n$ be linear transformations with matrices A and B. The **composition** is the linear transformation

$$T \circ U \colon \mathbf{R}^p \to \mathbf{R}^m$$
 defined by $T \circ U(x) = T(U(x))$.

Fact: The matrix for $T \circ U$ is AB.

Now let $T: \mathbf{R}^n \to \mathbf{R}^n$ be an *invertible* linear transformation. This means there is a linear transformation $T^{-1}: \mathbf{R}^n \to \mathbf{R}^n$ such that $T \circ T^{-1}(x) = x$ for all x in \mathbf{R}^n . Equivalently, it means T is one-to-one and onto.

Fact: If A is the matrix for T, then A^{-1} is the matrix for T^{-1} .

Matrix Multiplication/Inversion and Linear Transformations Example

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ scale the x-axis by 2, and let $U: \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation by 90°. Their matrices are:

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

The composition $T \circ U$ is: first rotate counterclockwise by 90° , then scale the x-axis by 2. The matrix for $T \circ U$ is

$$AB = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}.$$

The inverse of U rotates *clockwise* by 90° . The matrix for U^{-1} is

$$B^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Solving Linear Systems by Inverting Matrices

If A is invertible, then

$$Ax = b \iff A^{-1}(Ax) = A^{-1}b \iff x = A^{-1}b.$$

Important

If A is invertible, then Ax = b has exactly one solution for any b, namely, $x = A^{-1}b$.

Example

Solve
$$\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
.

Answer:

$$x = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \frac{1}{2 \cdot 3 - 1 \cdot 1} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -1 \\ 7 \end{pmatrix}.$$

Elementary Matrices

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

There are three kinds:

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \end{pmatrix} \xrightarrow{\text{supp}} B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 4 \end{pmatrix}$$

You get B by subtracting $2\times$ the first row of A from the second row.

$$B = EA$$
 where $E = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ subtract $2 \times$ the first row of I_2 from the second row.

The Inverse of an Elementary Matrix

Fact: the inverse of an elementary matrix E is the elementary matrix obtained by doing the opposite row operation to I_n .

If A is invertible, then there are a sequence of row operations taking A to I_n :

$$E_r E_{r-1} \cdots E_2 E_1 A = I_n$$
.

Taking inverses (note the order!):

$$A = E_1^{-1} E_2^{-1} \cdots E_r^{-1} I_n = E_1^{-1} E_2^{-1} \cdots E_r^{-1}.$$

The Invertible Matrix Theorem

For reference

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent. 15. Col $A = \mathbb{R}^n$.
- 7 T is one-to-one
- 8 Ax = b is consistent for all b in \mathbb{R}^n
- 9. The columns of A span \mathbb{R}^n .
- 10 T is onto

- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- 19 dim Nul A=0

l earn it!

Subspaces

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty"

"closed under addition"

"closed under \times scalars"

Examples:

- Any span.
- ▶ The column space of a matrix:

$$Col A = Span{columns of A}.$$

▶ The *null space* of a matrix:

$$\operatorname{\mathsf{Nul}} A = \big\{ x \mid Ax = 0 \big\}.$$

Example

Is
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x + y = 0 \right\}$$
 a subspace?

- 1. Since 0 + 0 = 0, the zero vector is in V.
- 2. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ be arbitrary vectors in V. So x + y = 0 and

$$x'+y'=0$$
. We have to check if $\begin{pmatrix} x\\y\\z \end{pmatrix} + \begin{pmatrix} x'\\y'\\z' \end{pmatrix} = \begin{pmatrix} x+x'\\y+y'\\z+z' \end{pmatrix}$ is in V , i.e., if $(x+x')+(y+y')=0$.

$$(x + x') + (y + y') = (x + y) + (x' + y') = 0 + 0 = 0.$$

So condition (2) holds.

Example

Is
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x + y = 0 \right\}$$
 a subspace?

3. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be in V and let c be a scalar. So x + y = 0. We have to check if $c \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix}$ is in V, i.e. if cx + cy = 0.

$$cx + cy = c(x + y) = c \cdot 0 = 0.$$

So condition (3) holds.

Since conditions (1), (2), and (3) hold, V is a subspace.

Example

Is
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbf{R}^3 \mid \sin(x) = 0 \right\}$$
 a subspace?

- 1. Since sin(0) = 0, the zero vector is in V.
- 3. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be in V and let c be a scalar. So $\sin(x) = 0$. We have to check

if
$$c \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix}$$
 is in V , i.e., if $\sin(cx) = 0$. This is not true in general:

take
$$x = \pi$$
 and $c = \frac{1}{2}$. Then $\sin(cx) = \sin(\pi/2) = 1$. So $\begin{pmatrix} \pi \\ 0 \\ 0 \end{pmatrix}$ is in V

but
$$\frac{1}{2} \begin{pmatrix} \pi \\ 0 \\ 0 \end{pmatrix}$$
 is not.

Since condition (3) fails, V is not a subspace.

Basis of a Subspace

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in \mathbf{R}^n such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and
- 2. $\{v_1, v_2, \dots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

To check that \mathcal{B} is a basis for V, you have to check two things:

- 1. \mathcal{B} spans V.
- 2. \mathcal{B} is linearly independent.

This is what it means to justify the statement " \mathcal{B} is a basis for V."

Basis Theorem

Let V be a subspace of dimension m. Then:

- ▶ Any *m* linearly independent vectors in *V* form a basis for *V*.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

So if you already know the dimension of V, you only have to check one.

Verify that
$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 is a basis for $V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x+y=0 \right\}$.

- 0. In V: both are in V because 1 + (-1) = 0 and 0 + 0 = 0.
- 1. Span: If $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is in V, then y = -x, so we can write it as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -x \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

2. Linearly independent:

$$x\begin{pmatrix}1\\-1\\0\end{pmatrix}+y\begin{pmatrix}0\\0\\1\end{pmatrix}=0\implies\begin{pmatrix}x\\-x\\y\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}\implies x=y=0.$$

If we knew a priori that dim V=2, then we would only have to check 0, then 1 or 2.

Bases of Col A and Nul A

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \quad \stackrel{\mathsf{rref}}{\sim} \quad \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

pivot columns = basis ⟨wwww pivot columns in rref

So a basis for Col A is
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \right\}$$
. A vector in Col A: $\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$.

Parametric vector form for solutions to Ax = 0:

$$x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \text{ basis of } \begin{cases} \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$

A vector in Nul A: any solution to
$$Ax = 0$$
, e.g., $x = \begin{pmatrix} 0 \\ -4 \\ 1 \\ 0 \end{pmatrix}$.

Rank Theorem

Rank Theorem

If A is an $m \times n$ matrix, then

rank $A + \dim \text{Nul } A = n = \text{the number of columns of } A$.

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$
basis of Col A free variables

In this case, rank A=2 and dim Nul A=2, and 2+2=4, which is the number of columns of A.

- 1. Special formulas for 2×2 and 3×3 matrices.
- 2. For [upper or lower] triangular matrices:

$$\det A =$$
(product of diagonal entries).

3. Cofactor expansion along any row or column:

$$\det A = \sum_{j=1}^{n} a_{ij} C_{ij} \text{ for any fixed } i$$

$$\det A = \sum_{i=1}^{n} a_{ij} C_{ij} \text{ for any fixed } j$$

Start here for matrices with a row or column with lots of zeros.

4. By row reduction without scaling:

$$\det(A) = (-1)^{\#\mathsf{swaps}} \big(\mathsf{product} \ \mathsf{of} \ \mathsf{diagonal} \ \mathsf{entries} \ \mathsf{in} \ \mathsf{REF}\big)$$

This is fastest for big and complicated matrices.

5. Two of the above. (The cofactor formula is recursive.)

Determinants Defining properties

Definition

The determinant is a function

$$det: \{square matrices\} \longrightarrow \mathbf{R}$$

with the following defining properties:

- 1. $\det(I_n) = 1$
- If we do a row replacement on a matrix (add a multiple of one row to another), the determinant does not change.
- 3. If we swap two rows of a matrix, the determinant scales by -1.
- 4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use *row replacement* and *row swaps*. Then you never have to worry about scaling by the inverse.

- 1. There is one and only one function det: {square matrices} \rightarrow R satisfying the defining properties (1)–(4).
- 2. A is invertible if and only if $det(A) \neq 0$.
- 3. If we row reduce A without row scaling, then

$$\det(A) = (-1)^{\#\mathsf{swaps}} \big(\mathsf{product} \ \mathsf{of} \ \mathsf{diagonal} \ \mathsf{entries} \ \mathsf{in} \ \mathsf{REF} \big)$$

- 4. The determinant can be computed using any of the 2*n* cofactor expansions.
- 5. $\det(AB) = \det(A) \det(B)$ and $\det(A^{-1}) = \det(A)^{-1}$.
- 6. $det(A) = det(A^T)$
- 7. $|\det(A)|$ is the volume of the parallelepiped defined by the columns of A.
- 8. If A is an $n \times n$ matrix with transformation T(x) = Ax, and S is a subset of \mathbb{R}^n , then the volume of T(S) is $|\det(A)|$ times the volume of S. (Even for curvy shapes S.)
- 9. The determinant is multi-linear.

Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then T(S) is the parallelepiped defined by the columns of A, since the columns of A are $T(e_1), T(e_2), \ldots, T(e_n)$. In this case, Property 8 is the same as Property 7.

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is scaled by $|\det(A)|$; then you use *calculus* to reduce to the previous situation!

