Math 1553 Worksheet 8

October 21, 2016

1. Let
$$A = \begin{pmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{pmatrix}$$
.

a) Compute det(*A*) using row reduction.

- **b)** Compute $det((A^T)^5)$ without doing any more work.
- c) Compute $det(A^{-1})$ without doing any more work.

- **2.** Sing the eigenvector song: \square an eigenvector is a ν where A times ν is $\lambda \nu$. \square
- **3.** Determine whether the following statements are always true or sometimes false. In the latter case, correct it to make a true statement.
 - a) A matrix A is not invertible if 0 is an eigenvalue of A.
 - **b)** If v_1 and v_2 are linearly independent eigenvectors of A, then they must correspond to different eigenvalues.
 - **c)** The entries on the main diagonal of *A* are the eigenvalues of *A*.
 - **d)** The eigenvectors are in the range of the matrix $A \lambda I$.
 - e) The number λ is an eigenvalue of A if and only if there is a nonzero solution to the equation $(A \lambda I)x = 0$.
 - **f)** To find the eigenvectors of *A*, we reduce the matrix *A* to row echelon form.
- **4.** Find a basis for the (-1)-eigenspace of the following matrices.

a)
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$