Math 1553 Quiz 6

Solutions

1. [2 points each] Compute the determinants of the following matrices.
[Hint: none require extensive calculations.]
a) $\left(\begin{array}{ccc}1 & 1 & 2 \\ -3 & 0 & 1 \\ 1 & 2 & 3\end{array}\right)$

Solution.
For this matrix, it is probably easiest to use the formula for the determinant of a 3×3 matrix:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 2 \\
-3 & 0 & 1 \\
1 & 2 & 3
\end{array}\right)= & 1 \cdot 0 \cdot 3+1 \cdot 1 \cdot 1+2 \cdot(-3) \cdot 2 \\
& -1 \cdot 1 \cdot 2-1 \cdot(-3) \cdot 3-2 \cdot 0 \cdot 1 \\
= & -4
\end{aligned}
$$

а) $\left(\begin{array}{rrrr}0 & -4 & 0 & 5 \\ 3 & 2 & 1 & 0 \\ 2 & -1 & 0 & 1 \\ 0 & 1 & 0 & 2\end{array}\right)$

Solution.

Here it is easiest to use cofactor expansion along the third column, then the first column:

$$
\operatorname{det}\left(\begin{array}{rrrr}
0 & -4 & 0 & 5 \\
3 & 2 & 1 & 0 \\
2 & -1 & 0 & 1 \\
0 & 1 & 0 & 2
\end{array}\right)=-\operatorname{det}\left(\begin{array}{rrr}
0 & -4 & 5 \\
2 & -1 & 1 \\
0 & 1 & 2
\end{array}\right)=+2 \operatorname{det}\left(\begin{array}{rr}
-4 & 5 \\
1 & 2
\end{array}\right)=-26
$$

a) $\left(\begin{array}{ccccc}3 & 17 & -25 & 4 & 2 \\ 0 & -1 & 37 & -2 & 18 \\ 0 & 0 & 2 & 101 & -32 \\ 0 & 0 & 0 & 2 & -61 \\ 0 & 0 & 0 & 0 & 4\end{array}\right)$

Solution.

This is an upper-triangular matrix, so its determinant is the product of the diagonal entries:

$$
\operatorname{det}\left(\begin{array}{ccccc}
3 & 17 & -25 & 4 & 2 \\
0 & -1 & 37 & -2 & 18 \\
0 & 0 & 2 & 101 & -32 \\
0 & 0 & 0 & 2 & -61 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)=3 \cdot(-1) \cdot 2 \cdot 2 \cdot 4=-48
$$

а) $\left(\begin{array}{rrrrrr}1 & 2 & 20 & 7 & 4 & 32 \\ 2 & 4 & 11 & 14 & 17 & 5 \\ -1 & -2 & 37 & 19 & 24 & 2 \\ 3 & 6 & 7 & 8 & 9 & 10 \\ 0 & 0 & 34 & 2 & 7 & 55 \\ -2 & -4 & 5 & 77 & 19 & 0\end{array}\right)$

Solution.
The second column is a multiple of the first. Hence the columns are linearly dependent, so the matrix is not invertible, so its determinant is zero.
a) $\left(\begin{array}{ccc}d & e & f \\ 2 a+3 g & 2 b+3 h & 2 c+3 i \\ g & h & i\end{array}\right)^{3}, \quad$ assuming $\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=1$.
(Notice the first matrix is cubed.)

Solution.

The matrix $\left(\begin{array}{ccc}d & e & f \\ 2 a+3 g & 2 b+3 h & 2 c+3 i \\ g & h & i\end{array}\right)$ is obtained from $\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ by doing one row swap, multiplying one row by 2 , and doing one row replacement (not necessarily in that order). Hence

$$
\operatorname{det}\left(\begin{array}{ccc}
d & e & f \\
2 a+3 g & 2 b+3 h & 2 c+3 i \\
g & h & i
\end{array}\right)=(-1) \cdot 2 \cdot \operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=-2 .
$$

Cubing a matrix cubes its determinant, so

$$
\operatorname{det}\left(\begin{array}{ccc}
d & e & f \\
2 a+3 g & 2 b+3 h & 2 c+3 i \\
g & h & i
\end{array}\right)^{3}=-8 .
$$

