- ▶ WeBWorK assignments 3.1 and 3.2 are due Friday at 6am.
- ▶ Quiz on Friday: 3.1 and 3.2.
- Midterm 2 will take place in recitation on Friday, 10/28.
 - This is the day before the withdrawal deadline.
 - ▶ It covers §§2.1–2.3, 2.8, 2.9, 3.1, and 3.2.
- Office hours: today 1–2pm, tomorrow 3:30–4:30pm, and by appointment, in Skiles 221.
 - As always, TAs' office hours are posted on the website.
 - Math Lab is also a good place to visit.

Chapter 5

Eigenvalues and Eigenvectors

Section 5.1

Eigenvectors and Eigenvalues

In a population of rabbits:

- 1. half of the newborn rabbits survive their first year;
- 2. of those, half survive their second year;
- their maximum life span is three years;
- 4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

$$f_n = \text{first-year rabbits in year } n$$

 $s_n = \text{second-year rabbits in year } n$
 $t_n = \text{third-year rabbits in year } n$

The rules say:

$$\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ s_{n+1} \\ t_{n+1} \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$
 and $v_n = \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}$. Then $Av_n = v_{n+1}$.

A Biology Question

If you know v_0 , what is v_{10} ?

$$v_{10} = Av_9 = AAv_8 = \cdots = A^{10}v_0.$$

This makes it easy to compute examples by computer:

v ₀	<i>V</i> ₁₀	<i>V</i> ₁₁
/3\	/30189\	/61316 \
(7)	7761	15095
\9 <i>]</i>	\ 1844 <i>]</i>	\ 3881 <i>]</i>
/1	(9459)	(19222)
(2)	2434	4729
\3 <i>]</i>	\ 577 <i>]</i>	\ 1217 <i>]</i>
(4)	/28856\	/58550\
(7)	7405	14428
\8 <i>]</i>	\ 1765 <i>]</i>	\ 3703 <i>]</i>

What do you notice about these numbers?

- Eventually, each segment of the population doubles every year: Av_n = v_{n+1} = 2v_n.
- 2. The ratios get close to (16 : 4 : 1):

$$v_n = (\text{scalar}) \cdot \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}.$$

Translation: 2 is an eigenvalue, and $\begin{pmatrix} 16\\4\\1 \end{pmatrix}$ is an eigenvector!

Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

- 1. An **eigenvector** of A is a *nonzero* vector v in \mathbb{R}^n such that $Av = \lambda v$, for some λ in \mathbb{R} . In other words, Av is a multiple of v.
- 2. An **eigenvalue** of A is a number λ in \mathbf{R} such that the equation $Av = \lambda v$ has a *nontrivial* solution.

If $Av = \lambda v$ for $v \neq 0$, we say λ is the **eigenvalue for** v, and v is an **eigenvector for** λ .

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

This is the most important definition in the course.

Checking Eigenvectors

Example

$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \qquad v = \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}$$

Check that:

$$Av = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 32 \\ 8 \\ 2 \end{pmatrix} = 2v$$

Hence v is an eigenvector of A, with eigenvalue $\lambda = 2$.

Example

$$A = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix} \qquad v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Check that:

$$Av = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 4v$$

Hence ν is an eigenvector of A, with eigenvalue $\lambda = 4$.

$$\mathsf{A.} \ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathsf{B.} \ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \mathsf{C.} \ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \mathsf{D.} \ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \mathsf{E.} \ \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

are eigenvectors of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$? What are the eigenvalues?

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \text{eigenvector with eigenvalue 2}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \text{eigenvector with eigenvalue 0}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 0 \begin{pmatrix} -1 \\ 1 \end{pmatrix} \qquad \text{eigenvector with eigenvalue 0}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \text{not an eigenvector}$$

is never an eigenvector

Checking Eigenvalues

Question: is
$$\lambda = 3$$
 an eigenvalue of $A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$?

In other words, does Av = 3v have a nontrivial solution?

...does
$$Av - 3v = 0$$
 have a nontrivial solution?

... does
$$(A - 3I)v = 0$$
 have a nontrivial solution?

We know how to answer that! Row reduction!

$$A - 3I = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix}$$

Row reduced:

$$\begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}$$

Parametric form: x = -4y; parametric vector form: $\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -4 \\ 1 \end{pmatrix}$.

Does there exist an eigenvector with eigenvalue $\lambda=3$? Yes! Any nonzero multiple of $\binom{-4}{1}$. Check:

$$\begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -12 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} -4 \\ 1 \end{pmatrix}.$$

Eigenspaces

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ -eigenspace of A is the set of all eigenvectors of A with eigenvalue λ , plus the zero vector:

$$\begin{split} \lambda\text{-eigenspace} &= \big\{ v \text{ in } \mathbf{R}^n \mid Av = \lambda v \big\} \\ &= \big\{ v \text{ in } \mathbf{R}^n \mid (A - \lambda I)v = 0 \big\} \\ &= \mathsf{Nul} \big(A - \lambda I \big). \end{split}$$

Since the λ -eigenspace is a null space, it is a *subspace* of \mathbb{R}^n .

How do you find a basis for the λ -eigenspace? Parametric vector form!

Example

Find a basis for the 2-eigenspace of

$$A = \begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}.$$

$$A - 2I = \begin{pmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & -\frac{1}{2} & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

parametric form
$$x = \frac{1}{2}y - 3z$$

parametric vector form
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{array}{c}
\text{basis} \\
\end{array} \left\{ \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Eigenspaces Picture

A basis for the 2-eigenspace of
$$\begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}$$
 is $\left\{ \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \right\}$. What does this look like?

For any v in the 2-eigenspace, Av = 2v by definition. So A acts by scaling by 2 on its 2-eigenspace. This is how eigenvalues and eigenvectors make matrices easier to understand.

Let A be an $n \times n$ matrix and let λ be a number.

- 1. λ is an eigenvalue of A if and only if $(A \lambda I)x = 0$ has a nontrivial solution, if and only if $Nul(A \lambda I) \neq \{0\}$.
- 2. In this case, finding a basis for the λ -eigenspace of A means finding a basis for Nul $(A-\lambda I)$ as usual, i.e. by finding the parametric vector form for the general solution to $(A-\lambda I)x=0$.
- 3. The eigenvectors with eigenvalue λ are the nonzero elements of Nul($A \lambda I$), i.e. the nontrivial solutions to $(A \lambda I)x = 0$.

The Eigenvalues of a Triangular Matrix are the Diagonal Entries

We've seen that finding eigenvectors for a given eigenvalue is a row reduction problem.

Finding all of the eigenvalues of a matrix is not a row reduction problem! We'll see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.

Why? Nul $(A - \lambda I) \neq \{0\}$ if and only if $A - \lambda I$ is not invertible, if and only if $det(A - \lambda I) = 0$.

$$\begin{pmatrix} 3 & 4 & 1 & 2 \\ 0 & -1 & -2 & 7 \\ 0 & 0 & 8 & 12 \\ 0 & 0 & 0 & -3 \end{pmatrix} - \lambda \textit{I}_{4} = \begin{pmatrix} 3 - \lambda & 4 & 1 & 2 \\ 0 & -1 - \lambda & -2 & 7 \\ 0 & 0 & 8 - \lambda & 12 \\ 0 & 0 & 0 & -3 - \lambda \end{pmatrix}.$$

The determinant is $(3 - \lambda)(-1 - \lambda)(8 - \lambda)(-3 - \lambda)$, which is zero exactly when $\lambda = 3, -1, 8$, or -3.

A Matrix is Invertible if and only if Zero is not an Eigenvalue

Fact: A is invertible if and only if 0 is not an eigenvalue of A.

Why?

0 is an eigenvalue of $A \iff Ax = 0x$ has a nontrivial solution $\iff Ax = 0$ has a nontrivial solution $\iff A$ is not invertible.

invertible matrix theorem

Eigenvectors with Distinct Eigenvalues are Linearly Independent

Fact: If v_1, v_2, \ldots, v_k are eigenvectors of A with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Why? If k=2, this says v_2 can't lie on the line through v_1 . But the line through v_1 is contained in the λ_1 -eigenspace, and v_2 does not have eigenvalue λ_1 .

In general: see Lay, Theorem 2 in $\S 5.1$ (or work it out for yourself; it's not too hard).

Consequence: An $n \times n$ matrix has at most n distinct eigenvalues.

Difference Equations

Let A be an $n \times n$ matrix. Suppose we want to solve $Av_n = v_{n+1}$ for all n. In other words, we want vectors v_0, v_1, v_2, \ldots , such that

$$Av_0 = v_1$$
 $Av_1 = v_2$ $Av_2 = v_3$...

We saw before that $v_n = A^n v_0$. But it is inefficient to multiply by A each time.

If v_0 is an eigenvector with eigenvalue λ , then

$$v_1 = Av_0 = \lambda v_0$$
 $v_2 = Av_1 = \lambda v_1 = \lambda^2 v_0$ $v_3 = Av_2 = \lambda v_2 = \lambda^3 v_0$.

In general, $v_n = \lambda^n v_0$. This is *much easier* to compute.

Example

$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \qquad v_0 = \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix} \qquad Av_0 = 2v_0.$$

So if you start with 16 baby rabbits, 4 first-year rabbits, and 1 second-year rabbit, then the population will exactly double every year. In year n, you will have $2^n \cdot 16$ baby rabbits, $2^n \cdot 4$ first-year rabbits, and 2^n second-year rabbits.