Announcements

- WeBWorK assignments 3.1 and 3.2 are due Friday at 6 am.
- Quiz on Friday: 3.1 and 3.2.
- Midterm 2 will take place in recitation on Friday, 10/28.
- This is the day before the withdrawal deadline.
- It covers §§2.1-2.3, 2.8, 2.9, 3.1, and 3.2.
- Office hours: today $1-2 \mathrm{pm}$, tomorrow 3:30-4:30pm, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Chapter 5

Eigenvalues and Eigenvectors

Section 5.1

Eigenvectors and Eigenvalues

A Biology Question

Motivation

In a population of rabbits:

1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. rabbits have $0,6,8$ baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

$$
\begin{aligned}
f_{n} & =\text { first-year rabbits in year } n \\
s_{n} & =\text { second-year rabbits in year } n \\
t_{n} & =\text { third-year rabbits in year } n
\end{aligned}
$$

The rules say:

$$
\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{n+1} \\
s_{n+1} \\
t_{n+1}
\end{array}\right) .
$$

Let $A=\left(\begin{array}{ccc}0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0\end{array}\right)$ and $v_{n}=\left(\begin{array}{c}f_{n} \\ s_{n} \\ t_{n}\end{array}\right)$. Then $A v_{n}=v_{n+1}$.

A Biology Question

Continued

If you know v_{0}, what is v_{10} ?

$$
v_{10}=A v_{9}=A A v_{8}=\cdots=A^{10} v_{0}
$$

This makes it easy to compute examples by computer:

v_{0}	v_{10}	v_{11}
$\left(\begin{array}{l}3 \\ 7 \\ 9\end{array}\right)$	$\left(\begin{array}{c}30189 \\ 7761 \\ 1844\end{array}\right)$	$\left(\begin{array}{c}61316 \\ 15095 \\ 3881\end{array}\right)$
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$	$\left(\begin{array}{c}9459 \\ 2434 \\ 577\end{array}\right)$	$\left(\begin{array}{c}19222 \\ 4729 \\ 1217\end{array}\right)$
$\left(\begin{array}{l}4 \\ 7 \\ 8\end{array}\right)$	$\left(\begin{array}{c}28856 \\ 7405 \\ 1765\end{array}\right)$	$\left(\begin{array}{c}58550 \\ 14428 \\ 3703\end{array}\right)$

What do you notice about these numbers?

1. Eventually, each segment of the population doubles every year: $A v_{n}=v_{n+1}=2 v_{n}$.
2. The ratios get close to (16:4:1):

$$
v_{n}=(\text { scalar }) \cdot\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)
$$

Translation: 2 is an eigenvalue, and $\left(\begin{array}{c}16 \\ 4 \\ 1\end{array}\right)$ is an eigenvector!

Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

1. An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}. In other words, $A v$ is a multiple of v.
2. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
If $A v=\lambda v$ for $v \neq 0$, we say λ is the eigenvalue for v, and v is an eigenvector for λ.

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

This is the most important definition in the course.

Checking Eigenvectors

Example

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) \quad v=\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)
$$

Check that:

$$
A v=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{c}
32 \\
8 \\
2
\end{array}\right)=2 v
$$

Hence v is an eigenvector of A, with eigenvalue $\lambda=2$.
Example

$$
A=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right) \quad v=\binom{1}{1}
$$

Check that:

$$
A v=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right)\binom{1}{1}=\binom{4}{4}=4 v
$$

Hence v is an eigenvector of A, with eigenvalue $\lambda=4$.

Which of the vectors
A. $\binom{1}{1}$
B. $\binom{1}{-1}$
C. $\binom{-1}{1}$
D. $\binom{2}{1}$
E. $\binom{0}{0}$
are eigenvectors of the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$? What are the eigenvalues?

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{1} & =2\binom{1}{1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{-1} & =0\binom{1}{-1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{-1}{1} & =0\binom{-1}{1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{2}{1} & =\binom{3}{3} \\
\binom{0}{0} &
\end{aligned}
$$

eigenvector with eigenvalue 2
eigenvector with eigenvalue 0
eigenvector with eigenvalue 0 not an eigenvector
is never an eigenvector

Checking Eigenvalues

Question: is $\lambda=3$ an eigenvalue of $A=\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)$?
In other words, does $A v=3 v$ have a nontrivial solution?

$$
\begin{aligned}
& \ldots \text { does } A v-3 v=0 \text { have a nontrivial solution? } \\
& \ldots \text { does }(A-3 I) v=0 \text { have a nontrivial solution? }
\end{aligned}
$$

We know how to answer that! Row reduction!

$$
A-3 I=\left(\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right)-3\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
-1 & -4 \\
-1 & -4
\end{array}\right)
$$

Row reduced:

$$
\left(\begin{array}{ll}
-1 & -4 \\
-1 & -4
\end{array}\right) \text { muฒ }\left(\begin{array}{ll}
1 & 4 \\
0 & 0
\end{array}\right)
$$

Parametric form: $x=-4 y$; parametric vector form: $\binom{x}{y}=y\binom{-4}{1}$.
Does there exist an eigenvector with eigenvalue $\lambda=3$? Yes! Any nonzero multiple of $\binom{-4}{1}$. Check:

$$
\left(\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right)\binom{-4}{1}=\binom{-12}{3}=3\binom{-4}{1}
$$

Eigenspaces

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\begin{aligned}
\lambda \text {-eigenspace } & =\left\{v \text { in } \mathbf{R}^{n} \mid A v=\lambda v\right\} \\
& =\left\{v \text { in } \mathbf{R}^{n} \mid(A-\lambda I) v=0\right\} \\
& =\operatorname{Nul}(A-\lambda I)
\end{aligned}
$$

Since the λ-eigenspace is a null space, it is a subspace of \mathbf{R}^{n}.
How do you find a basis for the λ-eigenspace? Parametric vector form!

Eigenspaces

Example

Find a basis for the 2-eigenspace of

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right) . \\
& A-2 I=\left(\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right) \underset{\text { row reduce }}{\text { mmm }} \boldsymbol{m m u n n} \rightarrow\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { parametric } \\
& \text { mumminnumnu } \rightarrow x=\frac{1}{2} y-3 z \\
& \underset{\substack{\text { parametric vector } \\
\text { form } \\
\text { fannumun }}}{ }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right) \\
& \underset{\substack{\text { basis } \\
\text { munnum }}}{\boldsymbol{m a n n m a n}}\left\{\left(\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Eigenspaces

A basis for the 2-eigenspace of $\left(\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right)$ is $\left\{\left(\begin{array}{c}\frac{1}{2} \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)\right\}$. What does this look like?

For any v in the 2-eigenspace, $A v=2 v$ by definition. So A acts by scaling by 2 on its 2-eigenspace. This is how eigenvalues and eigenvectors make matrices easier to understand.

Eigenspaces

Let A be an $n \times n$ matrix and let λ be a number.

1. λ is an eigenvalue of A if and only if $(A-\lambda I) x=0$ has a nontrivial solution, if and only if $\operatorname{Nul}(A-\lambda I) \neq\{0\}$.
2. In this case, finding a basis for the λ-eigenspace of A means finding a basis for $\operatorname{Nul}(A-\lambda I)$ as usual, i.e. by finding the parametric vector form for the general solution to $(A-\lambda I) x=0$.
3. The eigenvectors with eigenvalue λ are the nonzero elements of $\operatorname{Nul}(A-\lambda I)$, i.e. the nontrivial solutions to $(A-\lambda I) x=0$.

The Eigenvalues of a Triangular Matrix are the Diagonal Entries

We've seen that finding eigenvectors for a given eigenvalue is a row reduction problem.
Finding all of the eigenvalues of a matrix is not a row reduction problem! We'll see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.
Why? $\operatorname{Nul}(A-\lambda I) \neq\{0\}$ if and only if $A-\lambda I$ is not invertible, if and only if $\operatorname{det}(A-\lambda I)=0$.

$$
\left(\begin{array}{cccc}
3 & 4 & 1 & 2 \\
0 & -1 & -2 & 7 \\
0 & 0 & 8 & 12 \\
0 & 0 & 0 & -3
\end{array}\right)-\lambda I_{4}=\left(\begin{array}{cccc}
3-\lambda & 4 & 1 & 2 \\
0 & -1-\lambda & -2 & 7 \\
0 & 0 & 8-\lambda & 12 \\
0 & 0 & 0 & -3-\lambda
\end{array}\right) .
$$

The determinant is $(3-\lambda)(-1-\lambda)(8-\lambda)(-3-\lambda)$, which is zero exactly when $\lambda=3,-1,8$, or -3 .

A Matrix is Invertible if and only if Zero is not an Eigenvalue

Fact: A is invertible if and only if 0 is not an eigenvalue of A.
Why?

Eigenvectors with Distinct Eigenvalues are Linearly Independent

Fact: If $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Why? If $k=2$, this says v_{2} can't lie on the line through v_{1}. But the line through v_{1} is contained in the λ_{1}-eigenspace, and v_{2} does not have eigenvalue λ_{1}.

In general: see Lay, Theorem 2 in $\S 5.1$ (or work it out for yourself; it's not too hard).

Consequence: An $n \times n$ matrix has at most n distinct eigenvalues.

Difference Equations

Let A be an $n \times n$ matrix. Suppose we want to solve $A v_{n}=v_{n+1}$ for all n. In other words, we want vectors $v_{0}, v_{1}, v_{2}, \ldots$, such that

$$
A v_{0}=v_{1} \quad A v_{1}=v_{2} \quad A v_{2}=v_{3} \quad \ldots
$$

We saw before that $v_{n}=A^{n} v_{0}$. But it is inefficient to multiply by A each time. If v_{0} is an eigenvector with eigenvalue λ, then

$$
v_{1}=A v_{0}=\lambda v_{0} \quad v_{2}=A v_{1}=\lambda v_{1}=\lambda^{2} v_{0} \quad v_{3}=A v_{2}=\lambda v_{2}=\lambda^{3} v_{0}
$$

In general, $v_{n}=\lambda^{n} v_{0}$. This is much easier to compute.

Example

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) \quad v_{0}=\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right) \quad A v_{0}=2 v_{0}
$$

So if you start with 16 baby rabbits, 4 first-year rabbits, and 1 second-year rabbit, then the population will exactly double every year. In year n, you will have $2^{n} \cdot 16$ baby rabbits, $2^{n} \cdot 4$ first-year rabbits, and 2^{n} second-year rabbits.

