
Announcements
October 17

I WeBWorK assignments 3.1 and 3.2 are due Friday at 6am.

I Quiz on Friday: 3.1 and 3.2.

I Midterm 2 will take place in recitation on Friday, 10/28.
I This is the day before the withdrawal deadline.

I Office hours: Wednesday 1–2pm, Thursday 3:30–4:30pm, and by
appointment, in Skiles 221.

I As always, TAs’ office hours are posted on the website.
I Math Lab is also a good place to visit.



Section 3.2

Properties of Determinants



Plan for Today

Last time, we gave a recursive formula for determinants in terms of cofactor
expansions.

Plan for today:

I An abstract definition of the determinant in terms of its properties.

I Computing determinants using row operations.

I Determinants and products: det(AB) = det(A) det(B).

I Determinants and volumes.

I Determinants and linear transformations.

The determinant is one of the most amazing functions ever devised. Today is
about beginning to understand why.



The Determinant is a Function

We can think of the determinant as a function of the entries of a matrix:

det




a11 a12 a13
a21 a22 a23
a31 a32 a33


 =

a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33.

The formula for the determinant of an n × n matrix has n! terms. So the
determinant of a 10× 10 matrix has 3,628,800 terms!

When mathematicians encounter a function whose formula is too difficult to
write down, we try to characterize it in terms of its properties.

The determinant function is characterized by how it is changed by row
operations.



Defining the Determinant in Terms of its Properties

Definition
The determinant is a function

det : {square matrices} −→ R

with the following defining properties:

1. det(In) = 1

2. If we do a row replacement on a matrix (add a multiple of one row to
another), the determinant does not change.

3. If we swap two rows of a matrix, the determinant scales by −1.

4. If we scale a row of a matrix by k, the determinant scales by k.

Why would we think of these properties? This is how volumes work!

1. The volume of the unit cube is 1.

2. Volumes don’t change under a shear.

3. Volume of a mirror image is negative of the volume?

4. If you scale one coordinate by k, the volume is multiplied by k.



Properties of the Determinant
2 × 2 matrix

det

(
1 −2
0 3

)
= 3

volume = 3

Scale: R2 = 1
3
R2

det

(
1 −2
0 1

)
= 1

volume = 1

Row replacement: R1 = R1 + 2R2

det

(
1 −2
0 1

)
= 1

(This is a shear by the elementary matrix [ 1 2
0 1 ].)

volume still = 1



Properties of the Determinant
Elementary Matrices

Since an elementary matrix differs from the identity matrix by one row
operation, and since det(In) = 1, it is easy to calulate the determinant of an
elementary matrix:

det




1 0 8
0 1 0
0 0 1


 = det(In) = 1 (properties 1 and 2)

det




0 0 1
0 1 0
1 0 0


 = − det(In) = −1 (properties 1 and 3)

det




1 0 0
0 17 0
0 0 1


 = 17 det(In) = 17 (properties 1 and 4)



Computing the Determinant by Row Reduction

We can use the properties of the determinant and row reduction to compute
the determinant of any matrix! This means that det is completely characterized
by its defining properties.

det




0 1 0
1 0 1
5 7 −4


 = − det




1 0 1
0 1 0
5 7 −4


 (property 3)

= − det




1 0 1
0 1 0
0 7 −9


 (property 2)

= − det




1 0 1
0 1 0
0 0 −9


 (property 2)

= (−1) · (−9) det




1 0 1
0 1 0
0 0 1


 (property 4)

= (−1) · (−9) det




1 0 0
0 1 0
0 0 1


 (property 2)

= 9 (property 1)



Computing the Determinant by Row Reduction
Saving some work

The determinant of an upper (or lower) triangular matrix is the product of the
diagonal entries, so we can stop row reducing when we get to row echelon
form.

det




0 1 0
1 0 1
5 7 −4


 = · · · = − det




1 0 1
0 1 0
0 0 −9


 = 9.

This is almost always the easiest way to compute the determi-
nant of a large, complicated matrix, either by hand or by com-
puter. (Cofactor expansion is O(n!) ∼ O(nn√n), row reduction
is O(n3).)



Suppose that A is a 4× 4 matrix satisfying

Ae1 = e2 Ae2 = e3 Ae3 = e4 Ae4 = e1.

What is det(A)?

A. −1 B. 0 C. 1

Poll

These equations tell us the columns of A:

A =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




You need 3 row swaps to transform this to the identity matrix. So
det(A) = (−1)3 = −1.



A Mathematical IOU

The characterization of the determinant function in terms of its properties is
very useful. It gives us a fast way to compute determinants, and prove other
properties (later). But. . .

The disadvantage of defining a function by its properties instead of a formula
is: how do you know such a function exists? and if it exists, why is there only
one function satisfying those properties?

In our case, we can compute the determinant of a matrix from its defining
properties, so if it exists, it is unique. But how do we know that two different
row reductions won’t give two different answers for the determinant?

Here is a summary of the magical properties of the determinant. Prof.
Margalit’s notes (on the website) have very understandable proofs.



Magical Properties of the Determinant

1. There is one and only one function det : {square matrices} → R satisfying
the defining properties (1)–(4).

2. A is invertible if and only if det(A) 6= 0.

3. If we row reduce A without row scaling, then

det(A) = (−1)#swaps(product of diagonal entries in REF
)

4. The determinant can be computed using any of the 2n cofactor
expansions.

5. det(AB) = det(A) det(B)

6. det(A) = det(AT )

7. | det(A)| is the volume of the parallelepiped defined by the columns of A.

8. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)

9. The determinant is multi-linear (we’ll talk about this in a few slides).
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Magical Properties of the Determinant
Explanations

Property 1 (existence of a function det satisfying the defining properties
(1)–(4)) is the hardest one to prove.

We’ve already discussed property 3: recall that row replacement doesn’t change
the determinant, and a row swap changes the determinant by −1.

Property 4: One has to show that any cofactor expansion also satisfies the
defining properties of the determinant (1)–(4). See the notes.

Property 2: An invertible matrix A row reduces to the identity matrix. Since
det(In) 6= 0, this means det(A) 6= 0. A non-invertible matrix A row reduces to a
matrix with a zero row. We know such a matrix has zero determinant by
cofactor expansion.

Property 6 is proved using induction and cofactor expansions. It implies that
determinants scale the same way under column operations as row operations.

Property 7: First you define a signed volume vol (i.e. a way to decide whether
the volume of a parallelepiped is negative). Then it’s easy to show vol satisfies
the defining properties (1)–(4), so vol = det by Property 1.



Multiplicativity of the Determinant

Why is Property 5 true? In Lay, there’s a proof using elementary matrices.
Here’s a better one.

Let B be an n × n matrix. There are two cases:

1. If det(B) = 0, then B is not inverible. So for any matrix A, AB is not
invertible. (Otherwise B−1 = (AB)−1A.) So

det(AB) = 0 = det(A) · 0 = det(A) det(B).

2. If B is invertible, define another function

f : {n × n matrices} −→ R by f (A) =
det(AB)

det(B)
.

Let’s check the defining properties:
1. f (In) = det(InB)/ det(B) = 1.

2–4. Doing a row operation on A and then multiplying by B, does the same row
operation on AB. This is because a row operation is left-multiplication by
an elementary matrix E , and (EA)B = E(AB). Hence f scales like det with
respect to row operations.

By uniqueness, f = det, i.e.,

det(A) = f (A) =
det(AB)

det(B)
so det(A) det(B) = det(AB).



Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then T (S) is the
parallelepiped defined by the columns of A, since the columns of A are
T (e1),T (e2), . . . ,T (en). In this case, Property 8 is the same as Property 7.

e1

e2 S

vol(S) = 1

T

A =

(
1 1
−1 1

)

det(A) = 2

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is
scaled by | det(A)|; then you use calculus to reduce to the previous situation!

S
T

T (S)



Multi-Linearity of the Determinant

We can also think of det as a function of the columns (or the rows) of an n× n
matrix:

det : Rn × Rn × · · · × Rn

︸ ︷︷ ︸
n times

−→ R

det(v1, v2, . . . , vn) = det



| | |
v1 v2 · · · vn
| | |


 .

Property 9 says that for any i and any vectors v1, v2, . . . , vn and v ′i and any
scalar c,

det(v1, . . . , vi + v ′i , . . . , vn) = det(v1, . . . , vi , . . . , vn) + det(v1, . . . , v
′
i , . . . , vn)

det(v1, . . . , cvi , . . . , vn) = c det(v1, . . . , vi , . . . , vn).

In other words, scaling one column (or row) by c scales det by c (which we
already knew), and if column i is a sum of two vectors vi , v

′
i , then the

determinant is the sum of two determinants, one with vi in column i , and one
with v ′i in column i . This only works one column at a time.

Proof: just expand cofactors along column i .


