## Math 1553 Worksheet 7

October 14, 2016

1. Compute the determinant of

$$
A=\left(\begin{array}{cccc}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right)
$$

using cofactor expansions. Expand along the rows or columns that require the least amount of work.
2. Find the inverse of

$$
A=\left(\begin{array}{lll}
4 & 1 & 4 \\
3 & 0 & 2 \\
0 & 5 & 0
\end{array}\right)
$$

using the formula

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)
$$

3. a) Using cofactor expansion, explain why $\operatorname{det} A=0$ if $A$ has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det} A=0$ if $A$ has adjacent identical columns.
