Math 1553 Quiz 5

Solutions

1. [5 points] Find bases for the column space and the null space of the matrix

$$
A=\left(\begin{array}{cccc}
0 & -4 & 8 & -4 \\
-2 & -2 & 3 & -2 \\
-4 & -12 & 22 & -12
\end{array}\right)
$$

Solution.

First we row reduce:

$$
A \text { manus }\left(\begin{array}{cccc}
1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The first two columns are pivot columns, so a basis for the column space is

$$
\left\{\left(\begin{array}{c}
0 \\
-2 \\
-4
\end{array}\right),\left(\begin{array}{c}
-4 \\
-2 \\
-12
\end{array}\right)\right\}
$$

The variables x_{3} and x_{4} are free; the vector parametric form for the general solution to $A x=0$ is

$$
x=x_{3}\left(\begin{array}{c}
-\frac{1}{2} \\
2 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right) .
$$

A basis for the null space is

$$
\left\{\left(\begin{array}{c}
-\frac{1}{2} \\
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right)\right\} .
$$

2. [5 points] Let V be the subspace with basis

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
4 \\
0 \\
-5
\end{array}\right)\right\} .
$$

The vector

$$
x=\left(\begin{array}{l}
10 \\
-3 \\
-8
\end{array}\right)
$$

is in V. Find $[x]_{\mathcal{B}}$.

Solution.

We have to solve the vector equation $x=c_{1}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)+c_{2}\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right)$ in the unknowns c_{1}, c_{2}. In augmented matrix form, this is

$$
\left(\begin{array}{rr|r}
2 & 4 & 10 \\
-1 & 0 & -3 \\
-1 & -5 & -8
\end{array}\right) \text { row reduce }\left(\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Hence $c_{1}=3$ and $c_{2}=1$, so

$$
[x]_{\mathcal{B}}=\binom{3}{1}
$$

