Announcements

- The midterm will be returned in recitation on Friday.
- Homeworks 2.2 and 2.3 are due Friday at 6am.
- Quiz on Friday: 2.1, 2.2, 2.3.
- Midterm 2 will take place in Recitation on Friday, 10/28.
- Office hours: today $1-2 \mathrm{pm}$, tomorrow 3:30-4:30pm, and by appointment, in Skiles 221.
- As always, TAs' office hours are posted on the website.
- Math Lab is also a good place to visit.

Section 2.9

Dimension and Rank

Coefficients of Basis Vectors

Recall: a basis of a subspace V is a set of vectors that spans V and is linearly independent.

Lemma \longleftarrow like a theorem, but less important

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

for unique coefficients $c_{1}, c_{2}, \ldots, c_{m}$.
We know x is a linear combination of the v_{i} because they span V. Suppose that we can write x as a linear combination with different coefficients:

$$
\begin{aligned}
& x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} \\
& x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{m}^{\prime} v_{m}
\end{aligned}
$$

Subtracting:

$$
0=x-x=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+\left(c_{m}-c_{m}^{\prime}\right) v_{m}
$$

Since $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent, they only have the trivial linear dependence relation. That means each $c_{i}-c_{i}^{\prime}=0$, or $c_{i}=c_{i}^{\prime}$.

Bases as Coordinate Systems

The unit coordinate vectors $e_{1}, e_{2}, \ldots, e_{n}$ form a basis for \mathbf{R}^{n}. Any vector is a unique linear combination of the e_{i} :

$$
v=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right)=3\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-2\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=3 e_{1}+5 e_{2}-2 e_{3} .
$$

Observe: the coordinates of v are exactly the coefficients of e_{1}, e_{2}, e_{3}.
We can go backwards: given any basis \mathcal{B}, we interpret the coefficients of a linear combination as "coordinates" with respect to \mathcal{B}.

Definition

Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis of a subspace V. Any vector x in V can be written uniquely as a linear combination $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$. The coefficients $c_{1}, c_{2}, \ldots, c_{m}$ are the coordinates of x with respect to \mathcal{B}. The \mathcal{B}-coordinate vector of x is the vector

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { in } \mathbf{R}^{m}
$$

Bases as Coordinate Systems

Example 1

Let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \quad \mathcal{B}=\left\{v_{1}, v_{2}\right\}, \quad V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
Verify that \mathcal{B} is a basis:
Span: by definition $V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
Linearly independent: because they are not multiples of each other.
Question: If $[x]_{\mathcal{B}}=\binom{5}{2}$, then what is x ?

$$
[x]_{\mathcal{B}}=\binom{5}{2} \quad \text { means } \quad x=5 v_{1}+2 v_{2}=5\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
7 \\
2 \\
7
\end{array}\right) .
$$

Question: Find the \mathcal{B}-coordinates of $x=\left(\begin{array}{l}5 \\ 3 \\ 5\end{array}\right)$.
We have to solve the vector equation $x=c_{1} v_{1}+c_{2} v_{2}$ in the unknowns c_{1}, c_{2}.

$$
\left(\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
1 & 1 & 5
\end{array}\right) \text { anm }\left(\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right) \text { ann }\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

So $x=2 v_{1}+3 v_{2}$ and $[x]_{\mathcal{B}}=\binom{2}{3}$.

Bases as Coordinate Systems

Example 2

Let $v_{1}=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}2 \\ 8 \\ 6\end{array}\right), \quad V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
Question: find a basis for V.
V is the column span of the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 2 \\
3 & 1 & 8 \\
2 & 1 & 6
\end{array}\right) \underset{\text { rum reduce }}{\text { rown }}\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the column span is formed by the pivot columns: $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$.
Question: Find the \mathcal{B}-coordinates of $x=\left(\begin{array}{c}4 \\ 11 \\ 8\end{array}\right)$.
We have to solve $x=c_{1} v_{1}+c_{2} v_{2}$.

$$
\left(\begin{array}{rr|r}
2 & -1 & 4 \\
3 & 1 & 11 \\
2 & 1 & 8
\end{array}\right) \underset{\text { row reduce }}{\text { rammum }}\left(\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So $x=3 v_{1}+2 v_{2}$ and $[x]_{\mathcal{B}}=\binom{3}{2}$.

Bases as Coordinate Systems

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V and x is in V, then finding the \mathcal{B}-coordinates for x means solving the vector equation

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

in the unknowns $c_{1}, c_{2}, \ldots, c_{m}$. These are the \mathcal{B}-coordinates. This (usually) means row reducing the augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{m} & x \\
\mid & \mid & & \mid & \mid
\end{array}\right) .
$$

Question: what happens if you try to find the \mathcal{B}-coordinates of x not in V ? You end up with an inconsistent system: V is the span of $v_{1}, v_{2}, \ldots, v_{m}$, and if x is not in the span, then $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$ has no solution.

Bases as Coordinate Systems

Let

$$
v_{1}=\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

These form a basis \mathcal{B} for the plane

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}
$$

in \mathbf{R}^{3}.
Question: estimate the \mathcal{B}-coordinates of these vectors:

$$
\left[u_{1}\right]_{\mathcal{B}}=\binom{1}{1} \quad\left[u_{2}\right]_{\mathcal{B}}=\binom{-1}{\frac{1}{2}} \quad\left[u_{3}\right]_{\mathcal{B}}=\binom{\frac{3}{2}}{-\frac{1}{2}} \quad\left[u_{4}\right]_{\mathcal{B}}=\binom{0}{\frac{3}{2}}
$$

Remark

Many of you want to think of a plane in \mathbf{R}^{3} as "being" \mathbf{R}^{2}. Choosing a basis \mathcal{B} and using \mathcal{B}-coordinates is one way to make sense of that. But remember that the coordinates are the coefficients of a linear combination of the basis vectors.

The Rank Theorem

Recall:

- The dimension of a subspace V is the number of vectors in a basis for V.
- A basis for the column space of a matrix A is given by the pivot columns.
- A basis for the null space of A is given by the vectors attached to the free variables in the parametric vector form.

Definition

The rank of a matrix A, written $\operatorname{rank} A$, is the dimension of the column space $\operatorname{Col} A$.

Observe:

$$
\begin{aligned}
\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A & =\text { the number of columns with pivots } \\
\operatorname{dim} \operatorname{Nul} A & =\text { the number of free variables } \\
& =\text { the number of columns without pivots. }
\end{aligned}
$$

Rank Theorem

If A is an $m \times n$ matrix, then $\operatorname{rank} A+\operatorname{dim} \operatorname{NuI} A=n=$ the number of columns of A.

The Rank Theorem

Continued

Rank Theorem

If A is an $m \times n$ matrix, then

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=\text { the number of columns of } A \text {. }
$$

What does this mean? In the equation $A x=b$,

- You have some number of degrees of freedom in choosing b for which $A x=b$ is consistent (the column span).
- For a given b in the column span, you have some number of degrees of freedom in choosing x (the solution set).
- These two numbers always sum to n.

This is a nontrivial relationship between the solution set of $A x=b$ and the space of all b such that $A x=b$ is consistent.
Example
If $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$, then rank $A=1$ and $\operatorname{dim} \operatorname{NuI} A=2=3-1$.

The Rank Theorem

Example

Since the first two columns are a basis for $\operatorname{Col} A$, the rank is 2 , and any b in $\operatorname{Col} A$ can be written uniquely as

$$
b=c_{1}\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)
$$

So there are two degrees of freedom in choosing the possible b 's.
Since there are two free variables x_{3}, x_{4}, any solution to $A x=b$ (for b in $\operatorname{Col} A$) can be written uniquely in vector parametric form as

$$
x=p+x_{3}\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right)
$$

where p is a particular solution. There are two degrees of freedom in choosing x. The Rank Theorem says $2+2=4$.

Poll

Let A and B be 3×3 matrices. Suppose that $\operatorname{rank}(A)=$ 2 and $\operatorname{rank}(B)=2$. Is it possible that $A B=0$? Why or why not?

If $A B=0$, then $A B x=0$ for every x in \mathbf{R}^{3}.
This means $A(B x)=0$, so $B x$ is in Nul A.
This is true for every x, so $\operatorname{Col} B$ is contained in $\operatorname{Nul} A$.
But $\operatorname{dim} \operatorname{Nul} A=1$ and $\operatorname{dim} \operatorname{Col} B=2$, and a 1-dimensional space can't contain a 2-dimensional space.

Hence it can't happen.

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

In other words, if you already know that $\operatorname{dim} V=m$, then any m linearly independent vectors in V automatically span V, and any m vectors that span V are automatically linearly independent.

Why?

- If you had m linearly independent vectors that don't form a basis, then they don't span. Hence you can find another vector in V but not in the span of these m, to get $m+1$ linearly independent vectors. The span of these has dimension $m+1$. But a subspace of dimension m can't contain a subspace of larger dimension.
- If you had m vectors that span but don't form a basis, they're linearly dependent. This means you can remove a vector to get $m-1$ vectors that span V. This means $\operatorname{dim} V<m$.

The Invertible Matrix Theorem

Addenda

The Invertible Matrix Theorem
Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
```
2. T is invertible.
3. A is row equivalent to In}\mathrm{ .
4. A has n pivots.
5. }Ax=0\mathrm{ has only the trivial solution.
6. The columns of }A\mathrm{ are linearly independent.
7. T is one-to-one.
```

```
8. Ax=b is consistent for all b in R}\mp@subsup{\mathbf{R}}{}{n}\mathrm{ .
```

8. Ax=b is consistent for all b in R}\mp@subsup{\mathbf{R}}{}{n}\mathrm{ .
9. The columns of A span R}\mp@subsup{\mathbf{R}}{}{n}\mathrm{ .
10. The columns of A span R}\mp@subsup{\mathbf{R}}{}{n}\mathrm{ .
11. A has a left inverse (there exists B such that }BA=\mp@subsup{I}{n}{}\mathrm{).
12. A has a left inverse (there exists B such that }BA=\mp@subsup{I}{n}{}\mathrm{).
13. A has a right inverse (there exists B such that }AB=\mp@subsup{I}{n}{}\mathrm{).
14. A has a right inverse (there exists B such that }AB=\mp@subsup{I}{n}{}\mathrm{).
```
10. T is onto.
```

10. T is onto.
11. }\mp@subsup{A}{}{T}\mathrm{ is invertible.
```
13. }\mp@subsup{A}{}{T}\mathrm{ is invertible.
```

14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

These are equivalent to the previous conditions by the Rank Theorem and the Basis Theorem. For instance, if the columns of A span \mathbf{R}^{n}, then because there are n columns and $\operatorname{dim} \mathbf{R}^{n}=n$, they form a basis. Hence $\operatorname{dim} \operatorname{Nul} A=0$.

