Announcements
October 3

v

The midterm will be returned in recitation on Friday.
> Keep tabs on your grades in T-Square.
» Homeworks 2.2 and 2.3 are due Friday at 6am.

» Quiz on Friday: 2.1, 2.2, 2.3.

v

Office hours: Wednesday 1-2pm, Thursday 2:30—-4:30pm.

> As always, TAs' office hours are posted on the website.
> Math Lab is also a good place to visit.



Section 2.8

Subspaces of R”



Motivation

Today we will discuss subspaces of R".

A subspace turns out to be the same as a span, except we don't care which
vectors it's the span of.

This arises naturally when you have, say, a plane through the origin in R® which
is not defined (a priori) as a span, but you still want to say something about it.

x+3y+z=0



Definition of Subspace

Definition

A subspace of R" is a subset V of R” satisfying:
1. The zero vector is in V. “not empty”
2. If uand v are in V, then u+ vis also in V. “closed under addition”
3. Ifuisin V and cisin R, then cuisin V. “closed under x scalars”

What does this mean?
» If visin V, then all scalar multiples of v are in V by (3). That is, the line
through v isin V.
> If u,v arein V, then xu and yv are in V for scalars x,y by (3). So
xu+ yvisin V by (2). So Span{u, v} is contained in V.
> Likewise, if vi,vo,..., v, are all in V, then Span{vi, va,...,v,} is
contained in V.

Summary: a subspace V has the property that it contains the span of any set
of vectors in V.

In particular, V is a span: it is the span of all of the vectors in V. (We'll find a
better spanning set later.)



Examples

Example
A line L through the origin: this contains L
the span of any vector in L.

Example

A plane P through the origin: this con- P
tains the span of any vectors in P. (

Example
All of R": this contains 0, and is closed under addition and scalar multiplication.

Example
The subset {0}.

Note these are all pictures of spans! (Line, plane, space, etc.)



Non-Examples

Non-Example

A line L (or any other set) that doesn’t
contain the origin is not a subspace.
Fails: 1.

Non-Example

A circle C is not a subspace. Fails:
1,2,3. Think: a circle isn't a “linear
space.”

Non-Example

The first quadrant in R? is not a sub-
space. Fails: 3 only.

Non-Example

A line union a plane in R® is not a sub-
space. Fails: 2 only.



Spans are Subspaces

Fact: any Span{vi, v2,...,vs} is a subspace.

Check:
1. 0=0v1 + 0w, + -+ + Ov, is in the span.
2. If, say, u = 3vi +4v; and v = —vi — 2w, then

u+v=3vi+4v, —v; — 2w =2v; + 2w

is also in the span.

3. Similarly, if u is in the span, then so is cu for any scalar c.

[ Every subspace is a span, and every span is a subspace. ]

Definition
If V =Span{vi,v,...,vs}, we say that V is the subspace generated by or
spanned by the vectors vi, va,. .., Vy.



Which are subspaces? For those that are not,
which properties do they fail?

a {(2) nwra=0)

B. {(Z) in R2|a+b=0}

C. {(Z) in R2|ab:0}

o () e )
)

in R? | a, b are rational}




Column Space and Null Space

Let A be an m X n matrix. It naturally gives rise to two subspaces.
Definition
» The column space of A is the subspace of R” spanned by the columns of
A. It is written Col A.

» The null space of A is the set of all solutions of the homogeneous
equation Ax = 0:
Nul A= {x in R" | Ax = 0}.

This is a subspace of R".
The column space is defined as a span, so we know it is a subspace. It is the
range (as opposed to the codomain) of the transformation T(x) = Ax.
Check that the null space is a subspace:
1. 0isin Nul A because A0 = 0.
2. If uand v are in Nul A, then Au =0 and Av = 0. Hence
A(u+v)=Au+ Av =0,
so u+ v is in Nul A.

3. If uisin Nul A, then Au= 0. For any scalar ¢, A(cu) = cAu=0. So cu is
in Nul A.



Column Space and Null Space

Example
1 1
Let A=|1 1
1 1

Let's compute the column space:

1 1 1
Col A = Span 11,1 = Span 1
1 1 1

This is a line in R®,
Let's compute the null space:
X+y
) (3
y x4y
This zero if and only if x = —y. So

wia= {(2) ey )

This defines a line in R%:

/COIA

Nul A




The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so
it is a span.

Question
How to find vectors which span the null space?

Answer: parametric vector form! We know that the solution set to Ax = 0 has
a parametric form that looks like

1 AN 1 —2
5 3 if, say, x3 and xs 5 3
X3 1 + Xa 0 are the free Nul A = Span 1] 0
0 1 variables. So 0 1

Refer back to the slides for 9/12 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find
spanning vectors later, if we need them. This is one reason subspaces are so
useful.



The Null Space is a Span

Example, Revisited

1 1 1 1
Let A= | 1 1 |. The reduced row echelon formis | 0 0
1 1 0 0

This gives the equation x +y =0, or

X = —y parametric vector form (x> (_1
’VVWVWVVWVWVVWVVWVWVVWVVW = y
y =Y

The null space is N

wia=spon{ ()}




Basis of a Subspace

How many vectors are needed to span a given subspace?

7

\

Definition
Let V be a subspace of R". A basis of V is a set of vectors {vi, va,...,Vm} in
R" such that:

1. V =Span{vi,vs,...,Vm}, and
2. {vi,v2,...,Vvm} is linearly independent.

The number of vectors in a basis is the dimension of V, and is written dim V.

J

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the
span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't
span V.

Important

A subspace has many different bases, but they all have the same
number of vectors (see the exercises in §2.9).
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Bases of R?

Question
What is a basis for R??

We need two vectors that span R? and are lin-
early independent. {e1, e} is one basis.

1. They span: (j) = ae1 + be,.
2. They are linearly independent because

they are not collinear.

Question
What is another basis for R??

Any two nonzero vectors that are not collinear.

{®), (1)} is also a basis.
1. They span: [} 1] has a pivot in every row.

2. They are linearly independent: [} 1] has a
pivot in every column.

»
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Bases of R”

The unit coordinate vectors

1 0 0
0 1 0
e = , &= s ey, Ep—1 = , €n=
0 0 1
0 0 0

are a basis for R".
1. They span: I, has a pivot in every row.

2. They are linearly independent: [, has a pivot in every column.

In general: {vi,v2,..., vy} is a basis for R” if and only if the matrix

has a pivot in every row and every column, i.e. if A is invertible.



Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution
to Ax = 0 always form a basis for Nul A.

Example
1 2 0 -1 rref 1 0 -8 -7
A=|-2 -3 4 5 m 01 4 3
2 4 0 -2 0 0 0 0
parametric 8 7 basis of 8 7
vector —4 -3 Nul A —4 -3
MM X = X3 1 —+ Xa 0 MMM 1 s 0
0 1 0 1

1. The vectors span Nul A by construction (every solution to Ax = 0 has this
form).

2. Can you see why they are linearly independent? (Look at the last two
rows.)



Basis for Col A

Fact

The pivot columns of A always form a basis for Col A.

Warning: | mean the pivot columns of the original matrix A, not the
row-reduced form. (Row reduction changes the column space.)

Example
1] (20 -1 rref 1 0 -8 —7
A= | 42 23 1 5 My 0 1 4 3
2 4.0 -2 0 0 0 0
YV VVV,V.V 9

So a basis for Col A is

1 2
-2, (-3
2 4

Why? End of §2.8, or ask in office hours.



