- ► The first midterm is this Friday, during recitation. It covers Chapter 1, sections 1–5 and 7–9.
- ▶ Homework 1.9 is due Friday at 6am.
- ▶ Homework 2.1 is now due due **Monday at 6am.**
- ▶ Solutions to the practice midterm have been posted on the website.
- ▶ Other midterm details and study tips have been posted to Piazza.
- ▶ Extra office hours: today, 1–3pm; tomorrow, 2:30–4:30pm.
 - As always, TAs' office hours are posted on the website.
 - ▶ Math Lab is also a good place to visit.

Review for Midterm 1

Selected Topics

Linear Equations

We have four equivalent ways of writing (and thinking about) linear systems:

1. As a system of equations:

$$2x_1 + 3x_2 = 7$$
$$x_1 - x_2 = 5$$

2. As an augmented matrix:

$$\begin{pmatrix}
2 & 3 & 7 \\
1 & -1 & 5
\end{pmatrix}$$

3. As a vector equation $(x_1v_1 + \cdots + x_nv_n = b)$:

$$x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

4. As a matrix equation (Ax = b):

$$\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

In particular, all four have the same solution set.

The system of equations is **consistent** if it has at least one solution; it is **inconsistent** otherwise.

The **span** of vectors v_1, v_2, \ldots, v_n is the set of all linear combinations of these vectors:

$$\mathsf{Span}\{v_1, v_2, \dots, v_n\} = \big\{a_1v_1 + a_2v_2 + \dots + a_nv_n \mid a_1, a_2, \dots, a_n \text{ in } \mathbf{R}\big\}.$$

Theorem

Let v_1, v_2, \ldots, v_n , and b be vectors in \mathbf{R}^m , and let A be the $m \times n$ matrix with columns v_1, v_2, \ldots, v_n . The following are equivalent:

1. Ax = b is consistent.

2. $(A \mid b)$ does not have a pict in the lest column. the given vectors

- 2. $(A \mid b)$ does not have a pivot in the last column.
- 3. b is in Span $\{v_1, v_2, \dots, v_n\}$ (the span of the columns of A).

In this case, a solution to the matrix equation

$$A\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b \quad \text{gives the linear combination} \quad x_1v_1 + x_2v_2 + \dots + x_nv_n = b.$$

Transformations

Definition

A **transformation** (or **function** or **map**) from \mathbb{R}^n to \mathbb{R}^m is a rule T that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m .

Picture and vocabulary words:

It is **one-to-one** if different vectors in the domain go to different vectors in the codomain: $x \neq y \implies T(x) \neq T(y)$.

It is **onto** if every vector in the codomain is T(x) for some x. In other words, the range equals the codomain.

Linear Transformations

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **linear** if it satisfies:

$$T(u+v) = T(u) + T(v)$$
 and $T(cu) = cT(u)$

for every u, v in \mathbb{R}^n and every c in \mathbb{R} .

If A is an $m \times n$ matrix, you get a linear transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ defined by

$$T(x) = Ax$$
.

Conversely, if $T: \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation, then T(x) = Ax, where A is the $m \times n$ matrix

$$A = \left(\begin{array}{ccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

As always, e_1, e_2, \ldots, e_n are the unit coordinate vectors

$$e_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 1 \end{pmatrix}.$$

Linear Transformations and Matrices

Let A be an $m \times n$ matrix and let T be the linear transformation T(x) = Ax.

- ▶ The domain of T is \mathbb{R}^n . (Inputs are vectors with n entries.)
- ▶ The codomain of T is \mathbf{R}^m . (Outputs are vectors with m entries.)
- ► The range of T is span of the columns of A. (This is the set of all b in R^m such that Ax = b has a solution.)

Example

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} \qquad T(x) = Ax$$

- ▶ The domain of T is \mathbb{R}^2 .
- ▶ The codomain of T is \mathbb{R}^3 .
- ► The range of *T* is

$$\mathsf{Span}\left\{ \begin{pmatrix} 2\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}.$$

When the Span is Everything

Theorem

Let A be an $m \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^m$ be the linear transformation T(x) = Ax. The following are equivalent:

- 1. T is onto.
- 2. T(x) = b has a solution for every b in \mathbb{R}^m .
- 3. Ax = b is consistent for every b in \mathbf{R}^m .
- 4. The columns of A span \mathbb{R}^m .
- 5. A has a pivot in each row.

Moral: If A has a pivot in each row then its reduced row echelon form looks like this:

$$\begin{pmatrix} \mathbf{1} & 0 & \star & 0 & \star \\ 0 & \mathbf{1} & \star & 0 & \star \\ 0 & 0 & 0 & \mathbf{1} & \star \end{pmatrix} \quad \text{ and } \begin{pmatrix} A \mid b \end{pmatrix} \quad \begin{pmatrix} \mathbf{1} & 0 & \star & 0 & \star \mid \star \\ 0 & \mathbf{1} & \star & 0 & \star \mid \star \\ 0 & 0 & 0 & \mathbf{1} & \star \mid \star \end{pmatrix}.$$

There's no b that makes it inconsistent, so there's always a solution.

Refer: slides for 9/7, 9/21.

Linear Independence

A set of vectors $\{v_1, v_2, \dots, v_n\}$ is **linearly independent** if

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$$
 only when $a_1 = a_2 = \cdots = a_n = 0$.

Otherwise they are **linearly dependent**, and an equation $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$ with some $a_i \neq 0$ is a **linear dependence relation**.

Theorem

Let v_1, v_2, \ldots, v_n be vectors in \mathbf{R}^m , and let A be the $m \times n$ matrix with columns v_1, v_2, \ldots, v_n . The following are equivalent:

- 1. The set $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- 2. For every *i* between 1 and *n*, v_i is not in Span $\{v_1, v_2, \dots, v_{i-1}\}$.
- 3. Ax = 0 only has the trivial solution.
- 4. A has a pivot in every column.

If the vectors are linearly dependent, a nontrivial solution to the matrix equation

$$A\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0 \quad \text{gives the linear dependence relation} \quad x_1v_1 + x_2v_2 + \dots + x_nv_n = 0.$$

More Criteria for Linear Independence

Theorem

Let A be an $m \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^m$ be the linear transformation T(x) = Ax. The following are equivalent:

- 1. T is one-to-one.
- 2. T(x) = b has one or zero solutions for every b in \mathbf{R}^m .
- 3. Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m .
- 4. Ax = 0 has a unique solution.
- 5. The columns of A are linearly independent.
- 6. A has a pivot in each column.

Moral: If A has a pivot in each column then its reduced row echelon form looks like this:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and } \begin{pmatrix} A \mid b \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \mid \star \\ 0 & 1 & 0 \mid \star \\ 0 & 0 & 1 \mid \star \\ 0 & 0 & 0 \mid \star \end{pmatrix}.$$

This can be inconsistent, but if it is consistent, it has a unique solution.

Refer: slides for 9/12, 9/14, 9/21.

Parametric Form of Solution Sets

To find the solution set to Ax = b, first form the augmented matrix $(A \mid b)$, then row reduce.

$$\begin{pmatrix}
1 & 3 & 0 & 4 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 & -7
\end{pmatrix}$$

This translates into

$$x_1 + 3x_2$$
 $x_4 = 2$
 $x_3 - x_4 = 3$
 $x_5 = -7$

The variables correspond to the non-augmented columns of the matrix. The *free variables* correspond to the non-augmented columns *without pivots*. Move the free variables to the other side, get the *parametric form*:

$$x_1 = 2 - 3x_2 - x_4$$

 $x_3 = 3 + x_4$
 $x_5 = -7$

This is a solution for every value of x_3 and x_4 .

Parametric Vector Form of Solution Sets

Parametric form:

Now collect all of the equations into a vector equation:

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 3 \\ 0 \\ -7 \end{pmatrix} + \mathbf{x}_2 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \mathbf{x}_4 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

This is the parametric vector form of the solution set. This means that the

$$(\text{solution set}) = \begin{pmatrix} 2\\0\\3\\0\\-7 \end{pmatrix} + \operatorname{Span} \left\{ \begin{pmatrix} -3\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\1\\0 \end{pmatrix} \right\}.$$

Homogeneous and Non-Homogeneous Equations

The equation Ax = b is called **homogeneous** if b = 0, and **non-homogeneous** otherwise. A homogeneous equation always has the **trivial solution** x = 0:

$$A0 = 0.$$

The solution set to a homogeneous equation is always a span:

(solutions to
$$Ax = 0$$
) = Span $\{v_1, v_2, \dots, v_r\}$

where r is the number of free variables. The solution set to a consistent non-homogeneous equation is

(solutions to
$$Ax = b$$
) = $p + \text{Span}\{v_1, v_2, \dots, v_r\}$

where p is a **specific solution** (i.e. some vector such that Ap = b), and $Span\{v_1, \ldots, v_r\}$ is the solution set to the homogeneous equation Ax = 0. This is a *translate of a span*.

Both expressions can be read off from the parametric vector form.