Math 1553 Worksheet 5

September 23, 2016

Linear Transformations

1. Which of the following transformations are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
a) Counterclockwise rotation by 32° in \mathbf{R}^{2}.
b) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(z, x)$.
c) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(0, x)$.
d) The matrix transformation with matrix $A=\left(\begin{array}{cc}1 & 6 \\ -1 & 2 \\ 2 & -1\end{array}\right)$.
e) The matrix transformation with matrix $A=\left(\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
2. Say A is an $m \times 2$ matrix. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{m}$ be the transformation defined by $T(x)=$ $A x$. If the columns of A are linearly independent, what does the image of T look like geometrically? What if they're linearly dependent?
3. For each matrix, describe what the associated matrix transformation does to \mathbf{R}^{3} geometrically.
а) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
c) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
4. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points $(0,0,0),(2,0,0)$, $(0,2,0)$, and $(1,1,1)$. The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45° in a counterclockwise direction about the z-axis, and then projected onto the $x y$-plane.
a) Express this transformation as a composition of two simpler transformations.
b) Find a matrix C to represent the transformation that destroys the house. Express this as a product of the two matrices corresponding to the transformations in (a).
