Announcements

September 21

- Please complete the mid-semester CIOS survey this week.
- The first midterm will take place during recitation a week from Friday, September 30. It covers Chapter 1, sections 1-5 and 7-9.
- WeBWorK Assignments 1.5, 1.7, 1.8 are due Friday.
- There are three this week so that there can be two next week, the week of the midterm.
- Quiz on Friday: sections 1.5 and 1.7.
- My office hours are today, 1-2pm and tomorrow, 3:30-4:30pm, in Skiles 221.
- I'll have extra office hours next week.
- As always, TAs' office hours are posted on the website.
- Also there are links to other resources like Math Lab.

Onto Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto (or surjective) if the range of T is equal to \mathbf{R}^{m} (its codomain). In other words, each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n}. Note that not onto means there is some b in \mathbf{R}^{m} which is not the image of any x in \mathbf{R}^{n}.

Characterization of Onto Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- $T(x)=b$ has a solution for every b in \mathbf{R}^{m}
- $A x=b$ is consistent for every b in \mathbf{R}^{m}
- The columns of A span \mathbf{R}^{m}
- A has a pivot in every row.

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto, what can we say about the relative sizes of n and m ?
Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \leq n$.

$$
\left(\begin{array}{lllll}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right)
$$

For instance, \mathbf{R}^{2} is "too small" to map onto \mathbf{R}^{3}.

One-to-one Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}. In other words, each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n}. Note that not one-to-one means there are different vectors in \mathbf{R}^{n} with the same image.

Characterization of One-to-One Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- $T(x)=b$ has one or zero solutions for every b in \mathbf{R}^{m}
- $A x=b$ has a unique solution or is inconsistent for every b in \mathbf{R}^{m}
- $A x=0$ has a unique solution
- The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one, what can we say about the relative sizes of n and m ?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \leq m$.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For instance, \mathbf{R}^{3} is "too big" to map into \mathbf{R}^{2}.

Chapter 2

Matrix Algebra

Section 2.1

Matrix Operations

Motivation

Recall: we can turn any system of linear equations into a matrix equation

$$
A x=b
$$

This notation is suggestive. Can we solve the equation by "dividing by A "?

$$
x \stackrel{? ?}{=} \frac{b}{A}
$$

Answer: sometimes, but you have to know what you're doing.
Today we'll study matrix algebra: adding and multiplying matrices.

More Notation for Matrices

Let A be an $m \times n$ matrix.
We write $a_{i j}$ for the entry in the ith row and the j th column. It is called the ijth entry of the matrix.

The entries $a_{11}, a_{22}, a_{33}, \ldots$ are the diagonal entries; they form the main diagonal of the matrix.

A diagonal matrix is a square matrix whose only nonzero entries are on the main diagonal.

$$
\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)
$$

The $n \times n$ identity matrix I_{n} is the diagonal matrix with all diagonal entries equal to 1 . It is special because $I_{n} v=v$ for all v in \mathbf{R}^{n}.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

More Notation for Matrices

Continued

The zero matrix (of size $m \times n$) is the $m \times n$ matrix 0 with all zero entries.

$$
0=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose rows are the columns of A. In other words, the $i j$ entry of A^{T} is $a_{j i}$.

Addition and Scalar Multiplication

You add two matrices component by component, like with vectors.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)+\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right)=\left(\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right)
$$

Note you can only add two matrices of the same size.
You multiply a matrix by a scalar by multiplying each component, like with vectors.

$$
c\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{lll}
c a_{11} & c a_{12} & c a_{13} \\
c a_{21} & c a_{22} & c a_{23}
\end{array}\right)
$$

These satisfy the expected rules, like with vectors:

$$
\begin{aligned}
A+B & =B+A & (A+B)+C & =A+(B+C) \\
c(A+B) & =c A+c B & (c+d) A & =c A+d A \\
(c d) A & =c(d A) & A+0 & =A
\end{aligned}
$$

Matrix Multiplication

Beware: multiplication is more subtle than addition and scalar multiplication.
must be equal
Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix with columns $v_{1}, v_{2} \ldots, v_{p}$:

$$
B=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

The product $A B$ is the $m \times p$ matrix with columns $A v_{1}, A v_{2}, \ldots, A v_{p}$:

$$
A B \stackrel{\text { def }}{=}\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A v_{1} & A v_{2} & \cdots & A v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

In order for $A v_{1}, A v_{2}, \ldots, A v_{p}$ to make sense, the number of columns of A has to be the same as the number of rows of B.

Example

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right) & =\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \cdot\left(\begin{array}{l}
-3 \\
-2 \\
-1
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
14 & -10 \\
32 & -28
\end{array}\right)
\end{aligned}
$$

Composition of Transformations

Why is this the correct definition of matrix multiplication?

Definition

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be transformations. The composition is the transformation

$$
T \circ U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T \circ U(x)=T(U(x))
$$

This makes sense because $U(x)$ (the output of U) is in \mathbf{R}^{n}, which is the domain of T (the inputs of T).

If T and U are linear then so is $T \circ U$. We have to check:

$$
\begin{aligned}
T \circ U(v+w) & =T(U(v+w))=T(U(v)+U(w))=T(U(v))+T(U(w)) \\
& =T \circ U(v)+T \circ U(w) \\
T \circ U(c v) & =T(U(c v))=T(c U(v))=c T(U(v))=c T \circ U(v)
\end{aligned}
$$

Composition of Linear Transformations

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be linear transformations. Let A and B be their matrices:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) \quad B=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
U\left(e_{1}\right) & U\left(e_{2}\right) & \cdots & U\left(e_{p}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

Question

What is the matrix for $T \circ U$?
How do we find the matrix for $T \circ U$?

$$
T \circ U\left(e_{1}\right)=T\left(U\left(e_{1}\right)\right)=T\left(B e_{1}\right)=A\left(B e_{1}\right)=(A B) e_{1}
$$

because $B e_{1}$ is the first column of B, which is $U\left(e_{1}\right)$. For any other i, the same works:

$$
T \circ U\left(e_{i}\right)=T\left(U\left(e_{i}\right)\right)=T\left(B e_{i}\right)=A\left(B e_{i}\right)=(A B) e_{i}
$$

This says that the i th column of the matrix for $T \circ U$ is the i th column of $A B$.

The matrix of the composition is the product of the matrices!

Composition of Linear Transformations

Example

For example, let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right)
$$

Let $T(x)=A x$ and $U(y)=B y$, so

$$
T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{3} \quad T \circ U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}
$$

Let's find the matrix for $T \circ U$:

$$
\begin{aligned}
& T \circ U\left(e_{1}\right)=T\left(U\left(e_{1}\right)\right)=T\left(B e_{1}\right)=T\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=A\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\binom{14}{32} \\
& T \circ U\left(e_{2}\right)=T\left(U\left(e_{2}\right)\right)=T\left(B e_{2}\right)=T\left(\begin{array}{l}
-3 \\
-2 \\
-1
\end{array}\right)=A\left(\begin{array}{l}
-3 \\
-2 \\
-1
\end{array}\right)=\binom{-10}{-28}
\end{aligned}
$$

Before we computed $A B=\left(\begin{array}{ll}14 & -10 \\ 32 & -28\end{array}\right)$, so $A B$ is the matrix of $T \circ U$.

Poll

Do there exist nonzero matrices A and B with $A B=0$?

Here's an example:

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)=\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\binom{0}{1} \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\binom{0}{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

The Row-Column Rule for Matrix Multiplication

Recall: A row vector of length n times a column vector of length n is a scalar:

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

Another way of multiplying a matrix by a vector is:

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
\vdots \\
r_{m} x
\end{array}\right)
$$

On the other hand, you multiply two matrices by

$$
A B=A\left(\begin{array}{ccc}
\mid & & \mid \\
c_{1} & \cdots & c_{p} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & & \mid \\
A c_{1} & \cdots & A c_{p} \\
\mid & & \mid
\end{array}\right)
$$

It follows that

$$
A B=\left(\begin{array}{c}
-r_{1}- \\
\vdots \\
r_{m}
\end{array}\right)\left(\begin{array}{ccc}
\mid & & \mid \\
c_{1} & \cdots & c_{p} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{cccc}
r_{1} c_{1} & r_{1} c_{2} & \cdots & r_{1} c_{p} \\
r_{2} c_{1} & r_{2} c_{2} & \cdots & r_{2} c_{p} \\
\vdots & \vdots & & \vdots \\
r_{m} c_{1} & r_{m} c_{2} & \cdots & r_{m} c_{p}
\end{array}\right)
$$

The Row-Column Rule for Matrix Multiplication

The $i j$ entry of $C=A B$ is the i th row of A times the j th column of B :

$$
c_{i j}=(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

This is how everybody on the planet actually computes $A B$. Diagram ($C=A B$):

$$
\left(\begin{array}{ccccc}
a_{11} & \cdots & a_{1 k} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1} & \cdots & a_{i k} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m k} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{ccc|ccc}
b_{11} & \cdots & b_{1 j} & \cdots & b_{1 p} \\
\vdots & & \vdots \\
b_{k 1} & \cdots & & \vdots \\
\vdots & & b_{k j} & \cdots & b_{k p} \\
b_{n 1} & \cdots & \vdots \\
b_{n j} & \cdots & b_{n p}
\end{array}\right)=\left(\begin{array}{cccccc}
c_{11} & \cdots & c_{1 j} & \cdots & c_{1 p} \\
\vdots & & \vdots & & \vdots \\
c_{i 1} & \cdots & c_{i j} & \cdots & c_{i p} \\
\vdots & & \vdots & & \vdots \\
c_{m 1} & \cdots & c_{m j} & \cdots & c_{m p}
\end{array}\right)
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 1+2 \cdot 2+3 \cdot 3 & \square \\
\square & \square
\end{array}\right)=\left(\begin{array}{cc}
14 & \square \\
\square & \square
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
\square & \square \\
4 \cdot 1+5 \cdot 2+6 \cdot 3 & \square
\end{array}\right)=\left(\begin{array}{ll}
\square & \square \\
32 & \square
\end{array}\right)
\end{aligned}
$$

Properties of Matrix Multiplication

Mostly matrix multiplication works like you'd expect. Suppose A has size $m \times n$, and that the other matrices below have the right size to make multiplication work.

$$
\begin{array}{rlrl}
A(B C) & =(A B) C & A(B+C) & =A B+A C \\
(B+C) A & =B A+C A & c(A B) & =(c A) B \\
c(A B) & =A(c B) & I_{n} A & =A \\
A I_{m} & =A & &
\end{array}
$$

Most of these are easy to verify. For instance, $I_{n} A=A$ because $I_{n} v=v$ for every vector, and multiplication works column-by-column. Associativity is $A(B C)=(A B) C$. It is a pain to verify using the row-column rule! Much easier: note that for transformations S, T, U, one has

$$
\begin{aligned}
S \circ(T \circ U)(x) & =S(T \circ U(x))=S(T(U(x))) \\
& =(S \circ T)(U(x))=(S \circ T) \circ U(x)
\end{aligned}
$$

In other words, matrix multiplication is associative because composition of transformations is (obviously) associative.

This is a good example of an instance where having a conceptual viewpoint saves you a lot of work!

Properties of Matrix Multiplication

Caveats

Warning!

- $A B$ is usually not equal to $B A$.

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right)
$$

In fact, $B A$ may not even be defined.

- $A B=A C$ does not imply $B=C$, even if $A \neq 0$.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right)
$$

- $A B=0$ does not imply $A=0$ or $B=0$.

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Other Reading

Read about powers of a matrix and multiplication of transposes in §2.1.

