- ▶ Please complete the mid-semester CIOS survey this week.
- ► The first midterm will take place during recitation a week from Friday, September 30. It covers Chapter 1, sections 1–5 and 7–9.
- ▶ WeBWorK Assignments 1.5, 1.7, 1.8 are due Friday.
  - There are three this week so that there can be two next week, the week of the midterm.
- Quiz on Friday: sections 1.5 and 1.7.
- ► My office hours are today, 1–2pm and tomorrow, 3:30–4:30pm, in Skiles 221.
  - I'll have extra office hours next week.
  - As always, TAs' office hours are posted on the website.
  - ▶ Also there are links to other resources like Math Lab.

### Onto Transformations

### Definition

A transformation  $T \colon \mathbf{R}^n \to \mathbf{R}^m$  is **onto** (or **surjective**) if the range of T is equal to  $\mathbf{R}^m$  (its codomain). In other words, each b in  $\mathbf{R}^m$  is the image of at least one x in  $\mathbf{R}^n$ . Note that not onto means there is some b in  $\mathbf{R}^m$  which is not the image of any x in  $\mathbf{R}^n$ .



## Characterization of Onto Transformations

#### Theorem

Let  $T: \mathbf{R}^n \to \mathbf{R}^m$  be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- ightharpoonup T(x) = b has a solution for every b in  $\mathbf{R}^m$
- ▶ Ax = b is consistent for every b in  $\mathbb{R}^m$
- ▶ The columns of A span  $\mathbf{R}^m$
- ► A has a pivot in every row.

### Question

If  $T: \mathbf{R}^n \to \mathbf{R}^m$  is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an  $m \times n$  matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows:  $m \le n$ .

$$\begin{pmatrix} \mathbf{1} & 0 & \star & 0 & \star \\ 0 & \mathbf{1} & \star & 0 & \star \\ 0 & 0 & 0 & \mathbf{1} & \star \end{pmatrix}$$

For instance,  $\mathbf{R}^2$  is "too small" to map *onto*  $\mathbf{R}^3$ .

### One-to-one Transformations

#### Definition

A transformation  $T \colon \mathbf{R}^n \to \mathbf{R}^m$  is **one-to-one** (or **into**, or **injective**) if different vectors in  $\mathbf{R}^n$  map to different vectors in  $\mathbf{R}^m$ . In other words, each b in  $\mathbf{R}^m$  is the image of *at most one* x in  $\mathbf{R}^n$ . Note that *not* one-to-one means there are different vectors in  $\mathbf{R}^n$  with the same image.



### Characterization of One-to-One Transformations

#### Theorem

Let  $T: \mathbf{R}^n \to \mathbf{R}^m$  be a linear transformation with matrix A. Then the following are equivalent:

- ► *T* is one-to-one
- ightharpoonup T(x) = b has one or zero solutions for every b in  $\mathbf{R}^m$
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in  $\mathbf{R}^m$
- $\rightarrow$  Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every column.

### Question

If  $T: \mathbf{R}^n \to \mathbf{R}^m$  is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an  $m \times n$  matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns:  $n \le m$ .

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

For instance,  $\mathbf{R}^3$  is "too big" to map into  $\mathbf{R}^2$ .

## Chapter 2

Matrix Algebra

## Section 2.1

Matrix Operations

### Motivation

Recall: we can turn any system of linear equations into a matrix equation

$$Ax = b$$
.

This notation is suggestive. Can we solve the equation by "dividing by A"?

$$x \stackrel{??}{=} \frac{b}{A}$$

Answer: sometimes, but you have to know what you're doing.

Today we'll study matrix algebra: adding and multiplying matrices.

### More Notation for Matrices

Let A be an  $m \times n$  matrix.

We write  $a_{ij}$  for the entry in the ith row and the jth column. It is called the ijth entry of the matrix.

The entries  $a_{11}$ ,  $a_{22}$ ,  $a_{33}$ ,... are the **diagonal entries**; they form the **main diagonal** of the matrix.

A diagonal matrix is a *square* matrix whose only nonzero entries are on the main diagonal.

The  $n \times n$  identity matrix  $I_n$  is the diagonal matrix with all diagonal entries equal to 1. It is special because  $I_n v = v$  for all v in  $\mathbb{R}^n$ .

$$\begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

$$\begin{pmatrix}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{pmatrix}$$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

## More Notation for Matrices Continued

The **zero matrix** (of size  $m \times n$ ) is the  $m \times n$  matrix 0 with all zero entries.

The **transpose** of an  $m \times n$  matrix A is the  $n \times m$  matrix  $A^T$  whose rows are the columns of A. In other words, the ij entry of  $A^T$  is  $a_{ji}$ .

$$0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c}
A \\
 \begin{array}{c}
 A \\
 a_{11} \ a_{12} \ a_{13} \\
 a_{21} \ a_{22} \ a_{23}
\end{array}$$

$$\begin{array}{c}
 A \\
 a_{11} \ a_{21} \\
 a_{12} \ a_{22} \\
 a_{13} \ a_{23}
\end{array}$$

## Addition and Scalar Multiplication

You add two matrices component by component, like with vectors.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{pmatrix}$$

Note you can only add two matrices of the same size.

You multiply a matrix by a scalar by multiplying each component, like with vectors.

$$c\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} ca_{11} & ca_{12} & ca_{13} \\ ca_{21} & ca_{22} & ca_{23} \end{pmatrix}.$$

These satisfy the expected rules, like with vectors:

$$A + B = B + A$$
  $(A + B) + C = A + (B + C)$   
 $c(A + B) = cA + cB$   $(c + d)A = cA + dA$   
 $(cd)A = c(dA)$   $A + 0 = A$ 

## Matrix Multiplication

Beware: multiplication is more subtle than addition and scalar multiplication.

Let A be an  $m \times n$  matrix and let B be an  $n \times p$  matrix with columns  $V_1, V_2 \ldots, V_p$ :

$$B = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_p \\ | & | & & | \end{pmatrix}.$$

The **product** AB is the  $m \times p$  matrix with columns  $Av_1, Av_2, \ldots, Av_p$ :

$$AB \stackrel{\mathrm{def}}{=} \left( egin{array}{cccc} | & | & | & | \\ Av_1 & Av_2 & \cdots & Av_p \\ | & | & | \end{array} \right).$$

In order for  $Av_1, Av_2, \dots, Av_p$  to make sense, the number of columns of A has to be the same as the number of rows of B.

Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ -2 \\ -1 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 14 & -10 \\ 32 & -28 \end{pmatrix}$$

## Composition of Transformations

Why is this the correct definition of matrix multiplication?

### Definition

Let  $T: \mathbf{R}^n \to \mathbf{R}^m$  and  $U: \mathbf{R}^p \to \mathbf{R}^n$  be transformations. The **composition** is the transformation

$$T \circ U \colon \mathbf{R}^p \to \mathbf{R}^m$$
 defined by  $T \circ U(x) = T(U(x))$ .

This makes sense because U(x) (the output of U) is in  $\mathbb{R}^n$ , which is the domain of T (the inputs of T).



If T and U are linear then so is  $T \circ U$ . We have to check:

$$T \circ U(v + w) = T(U(v + w)) = T(U(v) + U(w)) = T(U(v)) + T(U(w))$$
  
=  $T \circ U(v) + T \circ U(w)$   
$$T \circ U(cv) = T(U(cv)) = T(cU(v)) = cT(U(v)) = cT \circ U(v)$$

## Composition of Linear Transformations

Let  $T: \mathbf{R}^n \to \mathbf{R}^m$  and  $U: \mathbf{R}^p \to \mathbf{R}^n$  be *linear* transformations. Let A and B be their matrices:

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right) \quad B = \left(\begin{array}{cccc} | & | & | \\ U(e_1) & U(e_2) & \cdots & U(e_p) \\ | & | & | \end{array}\right)$$

### Question

What is the matrix for  $T \circ U$ ?

How do we find the matrix for  $T \circ U$ ?

$$T \circ U(e_1) = T(U(e_1)) = T(Be_1) = A(Be_1) = (AB)e_1$$

because  $Be_1$  is the first column of B, which is  $U(e_1)$ . For any other i, the same works:

$$T \circ U(e_i) = T(U(e_i)) = T(Be_i) = A(Be_i) = (AB)e_i.$$

This says that the *i*th column of the matrix for  $T \circ U$  is the *i*th column of AB.

The matrix of the composition is the product of the matrices!

# Composition of Linear Transformations Example

For example, let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{pmatrix}.$$

Let T(x) = Ax and U(y) = By, so

$$T\colon \textbf{R}^3 \longrightarrow \textbf{R}^2 \qquad U\colon \textbf{R}^2 \longrightarrow \textbf{R}^3 \qquad T\circ U\colon \textbf{R}^2 \longrightarrow \textbf{R}^2.$$

Let's find the matrix for  $T \circ U$ :

$$T \circ U(e_1) = T(U(e_1)) = T(Be_1) = T\begin{pmatrix} 1\\2\\3 \end{pmatrix} = A\begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 14\\32 \end{pmatrix}$$
$$T \circ U(e_2) = T(U(e_2)) = T(Be_2) = T\begin{pmatrix} -3\\-2\\-1 \end{pmatrix} = A\begin{pmatrix} -3\\-2\\-1 \end{pmatrix} = \begin{pmatrix} -10\\-28 \end{pmatrix}$$

Before we computed  $AB = \begin{pmatrix} 14 & -10 \\ 32 & -28 \end{pmatrix}$ , so AB is the matrix of  $T \circ U$ .

Do there exist *nonzero* matrices A and B with AB=0?

Here's an example:

$$\begin{pmatrix}1&0\\1&0\end{pmatrix}\begin{pmatrix}0&0\\1&1\end{pmatrix}=\left(\begin{pmatrix}1&0\\1&0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}&\begin{pmatrix}1&0\\1&0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}\right)=\begin{pmatrix}0&0\\0&0\end{pmatrix}.$$

## The Row-Column Rule for Matrix Multiplication

Recall: A row vector of length n times a column vector of length n is a scalar:

$$(a_1 \cdots a_n)$$
  $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + \cdots + a_nb_n.$ 

Another way of multiplying a matrix by a vector is:

$$Ax = \begin{pmatrix} ----r_1 - --- \\ \vdots \\ ----r_m - --- \end{pmatrix} x = \begin{pmatrix} r_1x \\ \vdots \\ r_mx \end{pmatrix}.$$

On the other hand, you multiply two matrices by

$$AB = A \begin{pmatrix} | & & | \\ c_1 & \cdots & c_p \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ Ac_1 & \cdots & Ac_p \\ | & & | \end{pmatrix}.$$

It follows that

$$AB = \begin{pmatrix} ---- r_1 & ---- \\ \vdots & & | \\ ---- r_m & ---- \end{pmatrix} \begin{pmatrix} | & & | \\ c_1 & \cdots & c_p \\ | & & | \end{pmatrix} = \begin{pmatrix} r_1c_1 & r_1c_2 & \cdots & r_1c_p \\ r_2c_1 & r_2c_2 & \cdots & r_2c_p \\ \vdots & \vdots & & \vdots \\ r_mc_1 & r_mc_2 & \cdots & r_mc_n \end{pmatrix}$$

## The Row-Column Rule for Matrix Multiplication

The ij entry of C=AB is the ith row of A times the jth column of B:  $c_{ij}=(AB)_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}.$ 

This is how everybody on the planet actually computes AB. Diagram (C = AB):

$$\begin{pmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \underbrace{(a_{i1} & \cdots & a_{ik} & \cdots & a_{in})}_{i} & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mk} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \vdots & \vdots & \vdots \\ b_{k1} & \cdots & b_{kp} \\ \vdots & \vdots & \vdots & \vdots \\ b_{nj} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{ip} \\ \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{mp} \end{pmatrix}$$

$$jth \ column$$

$$ij \ entry$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 & \square \\ \square & \square \end{pmatrix} = \begin{pmatrix} 14 & \square \\ \square & \square \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} \Box & \Box \\ 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 3 & \Box \end{pmatrix} = \begin{pmatrix} \Box & \Box \\ 32 & \Box \end{pmatrix}$$

## Properties of Matrix Multiplication

Mostly matrix multiplication works like you'd expect. Suppose A has size  $m \times n$ , and that the other matrices below have the right size to make multiplication work.

$$A(BC) = (AB)C$$
  $A(B+C) = AB + AC$   
 $(B+C)A = BA + CA$   $c(AB) = (cA)B$   
 $c(AB) = A(cB)$   $I_nA = A$ 

Most of these are easy to verify. For instance,  $I_nA = A$  because  $I_nv = v$  for every vector, and multiplication works column-by-column. Associativity is A(BC) = (AB)C. It is a pain to verify using the row-column rule! Much easier: note that for transformations S, T, U, one has

$$S \circ (T \circ U)(x) = S(T \circ U(x)) = S(T(U(x)))$$
$$= (S \circ T)(U(x)) = (S \circ T) \circ U(x).$$

In other words, matrix multiplication is associative *because* composition of transformations is (obviously) associative.

This is a good example of an instance where having a conceptual viewpoint saves you a lot of work!

### Warning!

► AB is usually not equal to BA.

$$\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}\begin{pmatrix}2 & 0\\0 & 1\end{pmatrix}=\begin{pmatrix}0 & -1\\2 & 0\end{pmatrix} \qquad \begin{pmatrix}2 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}=\begin{pmatrix}0 & -2\\1 & 0\end{pmatrix}$$

In fact, BA may not even be defined.

▶ AB = AC does not imply B = C, even if  $A \neq 0$ .

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}$$

▶ AB = 0 does not imply A = 0 or B = 0.

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

## Other Reading

Read about powers of a matrix and multiplication of transposes in  $\S 2.1.$