Announcements

September 19

- Please complete the mid-semester CIOS survey this week.
- The first midterm will take place during recitation a week from Friday, September 30. It covers Chapter 1, sections 1-5 and 7-9.
- Homeworks 1.5, 1.7, 1.8 are due Friday.
- There are three this week so that there can be two next week, the week of the midterm.
- Quiz on Friday: sections 1.5 and 1.7.
- My office hours are Wednesday, 1-2pm and Thursday, 3:30-4:30pm, in Skiles 221.
- I'll have extra office hours next week.
- As always, TAs' office hours are posted on the website.
- Also there are links to other resources like Math Lab.

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

Matrix Transformations

Most of the transformations we encounter in this class will come from a matrix.

Definition

Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T(x)=A x
$$

In other words, T takes the vector x in \mathbf{R}^{n} to the vector $A x$ in \mathbf{R}^{m}.

- The domain of T is \mathbf{R}^{n}, which is the number of columns of A.
- The codomain of T is \mathbf{R}^{m}, which is the number of rows of A.
- The range of T is the set of all images of T :

$$
T(x)=A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

This is the column span of A.

Matrix Transformations

Example

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- If $u=\binom{3}{4}$ then $T(u)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)\binom{3}{4}=\left(\begin{array}{l}7 \\ 4 \\ 7\end{array}\right)$.
- Let $b=\left(\begin{array}{l}7 \\ 5 \\ 7\end{array}\right)$. Find v in \mathbf{R}^{2} such that $T(v)=b$. Is there more than one?

We want to find v such that $A v=b$. We know how to do that:

This gives $x=2$ and $y=5$, or $v=\binom{2}{5}$ (unique). In other words,

$$
T(v)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{2}{5}=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right)
$$

Matrix Transformations

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- Is there any c in \mathbf{R}^{3} such that there is more than one $w \mathbf{R}^{2}$ with $T(w)=c$?
Translation: is there any c in \mathbf{R}^{3} such that the solution set for $A x=c$ has more than one vector w in it?

The solution set to $A x=b$ has only one vector v. This is a translate of the solution set to $A x=0$. So is the solution set to $A x=c$. So no!

- Find c such that there is no v with $T(v)=c$.

Translation: Find c such that $A x=c$ is inconsistent.
Translation: Find c not in the column span of A (i.e., the range of T).
We could draw a picture, or notice: $a\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+b\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}a+b \\ b \\ a+b\end{array}\right)$. So anything in the column span has the same first and last coordinate. So $c=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is not in the column span.

Matrix Transformations

Geometric example

Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$. Then

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

This is projection onto the xy-axis. Picture:

Matrix Transformations

Geometric example

$$
\text { Let } A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \text { and let } T(x)=A x \text {, so } T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \text {. Then }
$$

$$
T\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y} .
$$

This is reflection over the y-axis. Picture:

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} .(T$ is called a shear.)

Poll

What does T do to this sheep?
Hint: first draw a picture what it does to the box around the sheep.

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad T(c v)=c T(v)
$$

This property is so special that it has its own name.

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors u, v in \mathbf{R}^{n} and all scalars c.
In other words, T "respects" addition and scalar multiplication.
Check: if T is linear, then

$$
T(0)=0 \quad T(c u+d v)=c T(u)+d T(v)
$$

for all vectors u, v and scalars c, d. More generally,

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)
$$

In engineering this is called superposition.

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. Is T linear? Check:

$$
\begin{aligned}
T(u+v) & =1.5(u+v)=1.5 u+1.5 v=T(u)+T(v) \\
T(c v) & =1.5(c v)=c(1.5 v)=c(T v)
\end{aligned}
$$

So T satisfies the two equations, hence T is linear.
This is called dilation or scaling (by a factor of 1.5). Picture:

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by

$$
T\binom{x}{y}=\binom{-y}{x}
$$

Is T linear? Check:

$$
\begin{gathered}
T\left(\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}\right)=\binom{-u_{2}}{u_{1}}+\binom{-v_{2}}{v_{1}}=\binom{-\left(u_{2}+v_{2}\right)}{\left(u_{1}+v_{1}\right)}=T\binom{u_{1}+u_{2}}{v_{1}+v_{2}} \\
T\left(c\binom{v_{1}}{v_{2}}\right)=T\binom{c v_{1}}{c v_{2}}=\binom{-c v_{2}}{c v_{1}}=c\binom{-v_{2}}{v_{1}}=c T\binom{v_{1}}{v_{2}} .
\end{gathered}
$$

So T satisfies the two equations, hence T is linear. This is called rotation (by 90°). Picture:

Section 1.9

The Matrix of a Linear Transformation

Linear Transformations are Matrix Transformations

Definition

The unit coordinate vectors in \mathbf{R}^{n} are

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Recall: A matrix A defines a linear transformation T by $T(x)=A x$.

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

This is an $m \times n$ matrix, and T is the matrix transformation for $A: T(x)=A x$.
In particular, every linear transformation is a matrix transformation.
The matrix A is called the standard matrix for T.

Linear Transformations are Matrix Transformations

Continued

Why? Suppose for simplicity that $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$.

$$
\begin{aligned}
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =T\left(x\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+y\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \\
& =T\left(x e_{1}+y e_{2}+z e_{3}\right) \\
& =x T\left(e_{1}\right)+y T\left(e_{2}\right)+z T\left(e_{3}\right) \\
& =\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& =A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
\end{aligned}
$$

So when we think of a matrix as a function from \mathbf{R}^{n} to \mathbf{R}^{m}, it's the same as thinking of a linear transformation.

Linear Transformations are Matrix Transformations

We defined the dilation transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. What is its standard matrix?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=1.5 e_{1}=\binom{1.5}{0} \\
T\left(e_{2}\right)=1.5 e_{2}=\binom{0}{1.5}
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)
$$

Check:

$$
\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)\binom{x}{y}=\binom{1.5 x}{1.5 y}=1.5\binom{x}{y}=T\binom{x}{y}
$$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
T(x)=x \text { rotated counterclockwise by an angle } \theta \text { ? }
$$

(Check linearity...)

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\binom{\cos (\theta)}{\sin (\theta)} \\
T\left(e_{2}\right)=\binom{-\sin (\theta)}{\cos (\theta)}
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \quad\binom{\theta=90^{\circ} \Longrightarrow}{A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}
$$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{2}\right)=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{3}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) .
$$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
T\left(e_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
T\left(e_{1}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Other Geometric Transformations

There is a long list of geometric transformations of \mathbf{R}^{2} in §1.9 of Lay. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, ...) Please look them over.

