- ▶ Please complete the mid-semester CIOS survey this week.
- ► The first midterm will take place during recitation a week from Friday, September 30. It covers Chapter 1, sections 1–5 and 7–9.
- ▶ Homeworks 1.5, 1.7, 1.8 are due Friday.
 - There are three this week so that there can be two next week, the week of the midterm.
- Quiz on Friday: sections 1.5 and 1.7.
- My office hours are Wednesday, 1–2pm and Thursday, 3:30–4:30pm, in Skiles 221.
 - I'll have extra office hours next week.
 - As always, TAs' office hours are posted on the website.
 - ▶ Also there are links to other resources like Math Lab.

Definition

A transformation (or function or map) from \mathbb{R}^n to \mathbb{R}^m is a rule T that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m .

You may be used to thinking of a function in terms of its graph. But for a function from \mathbb{R}^m to \mathbb{R}^n , the graph needs m+n dimensions, so it's hard to visualize and draw. We won't be graphing most of the transformations in this class.

Most of the transformations we encounter in this class will come from a matrix.

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$$
 defined by $T(x) = Ax$.

In other words, T takes the vector x in \mathbf{R}^n to the vector Ax in \mathbf{R}^m .

- ▶ The domain of T is \mathbb{R}^n , which is the number of columns of A.
- ▶ The *codomain* of T is \mathbb{R}^m , which is the number of rows of A.
- ▶ The *range* of *T* is the set of all images of *T*:

$$T(x) = Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the column span of A.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^3$.

► If
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 then $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$.

Let
$$b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$$
. Find v in \mathbb{R}^2 such that $T(v) = b$. Is there more than one?

We want to find v such that Av = b. We know how to do that:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} v = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \xrightarrow[\text{watrix} \\ \text{matrix} \\ \text{matrix} \\ 1 & 1 & 7 \end{pmatrix} \begin{pmatrix} 1 & 1 & 7 \\ 0 & 1 & 5 \\ 1 & 1 & 7 \end{pmatrix} \xrightarrow[\text{reduce} \\ \text{moduce} \\ \text{$$

This gives x = 2 and y = 5, or $v = \binom{2}{5}$ (unique). In other words,

$$T(v) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T \colon \mathbb{R}^2 \to \mathbb{R}^3$.

▶ Is there any c in \mathbb{R}^3 such that there is more than one w \mathbb{R}^2 with T(w) = c?

Translation: is there any c in \mathbf{R}^3 such that the solution set for Ax = c has more than one vector w in it?

The solution set to Ax = b has only one vector v. This is a translate of the solution set to Ax = 0. So is the solution set to Ax = c. So no!

Find c such that there is no v with T(v) = c.

Translation: Find c such that Ax = c is inconsistent.

Translation: Find c not in the column span of A (i.e., the range of T).

We could draw a picture, or notice: $a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b \\ a+b \end{pmatrix}$. So anything in the column span has the same first and last coordinate. So $c = \begin{pmatrix} \frac{1}{2} \\ \frac{2}{3} \end{pmatrix}$ is not in the column span.

Geometric example

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^3 \to \mathbb{R}^3$. Then
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

This is projection onto the xy-axis. Picture:

Geometric example

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^2 \to \mathbf{R}^2$. Then
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. (T is called a **shear**.)

Poll

What does T do to this sheep?

Hint: first draw a picture what it does to the box *around* the sheep.

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
 $A(cv) = cAv$.

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
 $T(cv) = cT(v)$.

This property is so special that it has its own name.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbf{R}^n and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Check: if T is linear, then

$$T(0) = 0 T(cu + dv) = cT(u) + dT(v)$$

for all vectors u, v and scalars c, d. More generally,

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$$

In engineering this is called superposition.

Linear Transformations Dilation

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. Is T linear? Check:

$$T(u+v) = 1.5(u+v) = 1.5u + 1.5v = T(u) + T(v)$$

 $T(cv) = 1.5(cv) = c(1.5v) = c(Tv).$

So T satisfies the two equations, hence T is linear.

This is called dilation or scaling (by a factor of 1.5). Picture:

Linear Transformations

Define $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$T\left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix} + \begin{pmatrix} -v_2 \\ v_1 \end{pmatrix} = \begin{pmatrix} -(u_2 + v_2) \\ (u_1 + v_1) \end{pmatrix} = T\begin{pmatrix} u_1 + u_2 \\ v_1 + v_2 \end{pmatrix}$$

$$T\left(c\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = T\begin{pmatrix} cv_1 \\ cv_2 \end{pmatrix} = \begin{pmatrix} -cv_2 \\ cv_1 \end{pmatrix} = c\begin{pmatrix} -v_2 \\ v_1 \end{pmatrix} = cT\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

So T satisfies the two equations, hence T is linear. This is called **rotation** (by 90°). Picture:

Section 1.9

The Matrix of a Linear Transformation

Definition

The unit coordinate vectors in \mathbb{R}^n are

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(egin{array}{cccc} |&&|&&|\ T(e_1)&T(e_2)&\cdots&T(e_n)\ |&&&| \end{array}
ight).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. In particular, every linear transformation is a matrix transformation.

The matrix A is called the **standard matrix** for T.

Why? Suppose for simplicity that $T: \mathbf{R}^3 \to \mathbf{R}^2$.

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = T \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= T (xe_1 + ye_2 + ze_3)$$
$$= xT(e_1) + yT(e_2) + zT(e_3)$$
$$= \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & T(e_3) \\ | & | & | \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= A \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

So when we think of a matrix as a function from \mathbb{R}^n to \mathbb{R}^m , it's the same as thinking of a linear transformation.

We defined the **dilation** transformation $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}$$

$$T(e_2) = 1.5e_2 = \begin{pmatrix} 0 \\ 1.5 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}.$$

Check:

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}.$$

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ defined by

$$T(x) = x$$
 rotated counterclockwise by an angle θ ?

(Check linearity...)

$$T(e_1) = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

$$T(e_2) = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$\begin{pmatrix} \theta = 90^{\circ} \implies \\ A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Question

Example, continued

Question

$$T(e_2)=e_2=egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$$
 .

Example, continued

Question

Question

Example, continued

$$T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 $T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
 $T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$
 $\Rightarrow A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$

Other Geometric Transformations

There is a long list of geometric transformations of \mathbf{R}^2 in $\S 1.9$ of Lay. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, ...) Please look them over.