Math 1553 Worksheet 4

September 16, 2016

Linear Independence: Concept Questions

1. If three vectors v_{1}, v_{2}, v_{3} span \mathbf{R}^{3}, must those vectors be linearly independent? Why or why not?
2. Which of the following true statements can be checked without row reduction?
a) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ \pi\end{array}\right),\left(\begin{array}{c}0 \\ \sqrt{2} \\ 0\end{array}\right)\right\}$ is linearly independent.
b) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right)\right\}$ is linearly independent.
c) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is linearly dependent.
d) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\}$ is linearly dependent.
3. How many solutions can the matrix equation $A x=b$ have if the columns of A are linearly independent? [Try $b=0$ first.]
a) 0
b) 1
c) ∞.

Linear Independence: Additive Color Theory

Every color on my computer monitor is a vector in \mathbf{R}^{3} with coordinates between 0 and 255 , inclusive. The coordinates correspond to the amount of red, green, and blue in the color.

Given colors $v_{1}, v_{2}, \ldots, v_{p}$, we can form a "weighted average" of these colors by making a linear combination

$$
v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}
$$

with $c_{1}+c_{2}+\cdots+c_{p}=1$. Example:

$$
\frac{1}{2} \square+\frac{1}{2} \square=\square
$$

4. Consider the colors on the right. Are these col-
ors linearly independent? What does this tell you
about the colors? $\left(\begin{array}{c}240 \\ 140 \\ 0\end{array}\right)\left(\begin{array}{c}0 \\ 120 \\ 100\end{array}\right)\left(\begin{array}{c}60 \\ 125 \\ 75\end{array}\right)$

5. Consider the colors on the right. For which h is

$$
\left\{\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right),\left(\begin{array}{c}
100 \\
150 \\
100
\end{array}\right),\left(\begin{array}{c}
116 \\
130 \\
h
\end{array}\right)\right\}
$$

linearly dependent? What does that say about the corresponding color?

