Math 1553 Worksheet 4
September 16, 2016

Linear Independence: Concept Questions

1. If three vectors \(v_1, v_2, v_3 \) span \(\mathbb{R}^3 \), must those vectors be linearly independent? Why or why not?

 Say \(\{v_1, v_2, v_3\} \) is not linearly independent. Then we can say that at least one of the vectors can be expressed as a linear combination of the others. Without loss of triviality, say \(v_1 = c_1 v_2 + c_2 v_3 \). Then \(v_1 \) is in the span of \(v_2, v_3 \), which can only be a plane (\(\mathbb{R}^2 \)). This is a contradiction with the initial statement. Therefore \(\{v_1, v_2, v_3\} \) must be linearly independent.

2. Which of the following true statements can be checked without row reduction?

 \[\begin{pmatrix} 3 & 3 & 0 \\ 3 & 10 & 0 \\ 4 & 20 & 0 \end{pmatrix} \]
 a) \(\begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \)
 \(\begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix} \)
 is linearly independent.

 \[\begin{pmatrix} 3 & 3 & 0 \\ 3 & 10 & 0 \\ 4 & 20 & 0 \end{pmatrix} \]
 b) \(\begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \)
 \(\begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix} \)
 is linearly independent.

 \[\begin{pmatrix} 3 & 3 & 0 \\ 3 & 10 & 0 \\ 4 & 20 & 0 \end{pmatrix} \]
 c) \(\begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \)
 \(\begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix} \)
 is linearly dependent.

 \[\begin{pmatrix} 3 & 3 & 0 \\ 3 & 10 & 0 \\ 4 & 20 & 0 \end{pmatrix} \]
 d) \(\begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \)
 \(\begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix} \)
 is linearly dependent.

 These vectors are in \(\mathbb{R}^3 \) so maximum #
 of vectors that can span \(\mathbb{R}^3 \) is 3. If you have a 4th vector, at least 1 must be dependent
 on the others.

3. How many solutions can the matrix equation \(Ax = b \) have if the columns of \(A \) are
 linearly independent? [Try \(b = 0 \) first.]

<table>
<thead>
<tr>
<th>Columns</th>
<th>Linearly independent?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 0</td>
<td>(\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix}) → Unique (1 soln)</td>
</tr>
<tr>
<td>b) 1</td>
<td>(\begin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}) → either unique or no solns</td>
</tr>
<tr>
<td>c) ∞</td>
<td>(\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix}) → columns of (A) not linearly independent</td>
</tr>
</tbody>
</table>

 \[b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \]

 \[x = \begin{pmatrix} 1 & 0 & c_1 \\ 0 & 1 & c_2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \]

 a) \(c_1(0) + c_2(0) = (c) \)
Linear Independence: Additive Color Theory

Every color on my computer monitor is a vector in \(\mathbb{R}^3 \) with coordinates between 0 and 255, inclusive. The coordinates correspond to the amount of red, green, and blue in the color.

Given colors \(v_1, v_2, \ldots, v_p \), we can form a “weighted average” of these colors by making a linear combination

\[
v = c_1 v_1 + c_2 v_2 + \cdots + c_p v_p
\]

with \(c_1 + c_2 + \cdots + c_p = 1 \). Example:

\[
\frac{1}{2} \begin{pmatrix} 140 \\ 120 \\ 125 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ 100 \\ 75 \end{pmatrix} = \begin{pmatrix} 70 \\ 60 \\ 100 \end{pmatrix}
\]

4. Consider the colors on the right. Are these colors linearly independent? What does this tell you about the colors? If \(Ax = 0 \) has \(x = 0 \) (trivial), then they are lin. indep.

\[
\begin{pmatrix} 240 & 0 & 0 \\ 140 & 120 & 0 \\ 0 & 100 & 75 \end{pmatrix} \xrightarrow{\text{REF}} \begin{pmatrix} 10 & 0 & \frac{3}{8} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

\(x_3 \) is free, so all three are linearly independent. \(x_1 \) and \(x_2 \) are pivots, so in order.

5. Consider the colors on the right. For which \(h \) is

\[
\left\{ \begin{pmatrix} 180 \\ 100 \\ 116 \\ 130 \end{pmatrix} \right\}
\]

linearly dependent? What does that say about the corresponding color?

\[
h = \begin{pmatrix} 40 \\ 80 \\ 120 \\ 160 \\ 200 \\ 240 \end{pmatrix}
\]

\(V_1, V_2, V_3 \) are linearly independant if the solution to \(Ax = 0 \) is \(\bar{0} \) and linearly dependant if not.

\[
V_1, V_2, V_3
\]

You can mix \(v_1, v_2 \) to get \(v_3 \) by \(v_1 + v_2 = v_3 \). You can mix \(v_2, v_3 \) to get \(v_1 \) by \(v_2 + v_3 = v_1 \). You cant mix \(v_3, v_1 \) to get \(v_2 \).

\[
\frac{4}{3} V_2 - \frac{1}{3} V_1 = V_3
\]

When you mix colors, you cant remove a part of a mixed color (e) blue+yellow = green, green+yellow = blue. You cant remove yellow, its mixed.