Math 1553 Quiz 3

Solutions

1. [5 points] Let v_1, v_2, \dots, v_p be vectors in \mathbb{R}^n . A vector b in \mathbb{R}^n is in Span $\{v_1, v_2, \dots, v_p\}$ if and only if the matrix equation Ax = b has a solution, where A is what matrix?

Solution.

To say b is in the span of v_1, v_2, \dots, v_p means that there exist scalars x_1, x_2, \dots, x_p such that

$$x_1v_1 + x_2v_2 + \dots + x_pv_p = b.$$

This is the same as saying

$$\begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_p \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = b.$$

2. [1 point each] For which matrices A does the matrix equation Ax = b have a solution for all b in \mathbb{R}^2 ?

a)
$$\begin{pmatrix} 1 & 2 & 4 \\ -2 & -4 & -8 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & 4 \\ -1 & -4 & -8 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$ d) $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\mathbf{b)} \begin{pmatrix} 1 & 2 & 4 \\ -1 & -4 & -8 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Solution.

The equation Ax = b has a solution for all b in \mathbb{R}^2 if and only if A has a pivot in each row. This can be checked by row reduction.

a)
$$\begin{pmatrix} 1 & 2 & 4 \\ -2 & -4 & -8 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{pmatrix}$:

does not have a pivot in each row.

b)
$$\begin{pmatrix} 1 & 2 & 4 \\ -1 & -4 & -8 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 2 & 4 \\ 0 & -2 & -4 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix}$:

does have a pivot in each row.

c)
$$\begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$:

does not have a pivot in each row.

$$\mathbf{d}) \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdots \begin{pmatrix} 1 \\ 0 \end{pmatrix} :$$

does not have a pivot in each row. (It can't because it's too skinny.)