
Announcements
September 14

I Homework 1.4 is due Friday.

I Quiz on Friday: section 1.4.

I My office hours are today, 1–2pm and tomorrow, rescheduled to a3–4pm,
in Skiles 221.

I As always, TAs’ office hours are posted on the website.
I Also there are links to other resources like Math Lab.

I The first midterm will take place during recitation on Friday, September
30. It covers Chapter 1, sections 1–5 and 7–9.



Section 1.7

Linear Independence



Motivation

Sometimes the span of a set of vectors is “smaller” than you expect.

Span{v ,w}
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w

Span{u, v ,w}
v

w

u

This can mean many things. For example, it can mean you’re using too many
vectors to write your solution set.

Notice in each case that one vector in the set is already in the span of the
others—so it doesn’t make the span bigger.

Today we will formalize this idea in the concept of linear (in)dependence.



Linear Independence

Definition
A set of vectors {v1, v2, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution x1 = x2 = · · · = xp = 0. The set {v1, v2, . . . , vp} is
linearly dependent otherwise.

In other words, {v1, v2, . . . , vp} is linearly dependent if there exist numbers
x1, x2, . . . , xp, not all equal to zero, such that

x1v1 + x2v2 + · · ·+ xpvp = 0.

This is called a linear dependence relation.

Like span, linear (in)dependence is another one of those big vocabulary
words that you absolutely need to learn. Much of the rest of the course
will be built on these concepts, and you need to know exactly what they
mean in order to be able to answer questions on quizzes and exams (and
solve real-world problems later on).



Linear Independence
Criterion

Suppose that one of the vectors {v1, v2, . . . , vp} is a linear combination of the
other ones (that is, it is in the span of the other ones):

v3 = 2v1 − 1

2
v2 + 6v4

Then the vectors are linearly dependent:

2v1 − 1

2
v2 − v3 + 6v4 = 0.

Conversely, if the vectors are linearly dependent

2v1 − 1

2
v2 + 6v4 = 0.

then one vector is a linear combination of (in the span of) the other ones:

v2 = 4v1 + 12v4.

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.



Linear Independence
Pictures in R2

Span{v}

v

In this picture

One vector {v}:
Linearly independent if v 6= 0.

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , u}:
Linearly dependent: u is in
Span{v ,w}.
Also v is in Span{u,w} and w
is in Span{u, v}.
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Linear Independence
Pictures in R2
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Two collinear vectors {v ,w}:
Linearly dependent: w is in
Span{v} (and vice-versa).

Observe: Two vectors are
linearly dependent if and only if
they are collinear.

Three vectors {v ,w , u}:
Linearly dependent: w is in
Span{v} (and vice-versa).

Observe: If a set of vectors is
linearly dependent, then so is
any set of vectors that contains
it!
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Two collinear vectors {v ,w}:
Linearly dependent: w is in
Span{v} (and vice-versa).

Observe: Two vectors are
linearly dependent if and only if
they are collinear.

Three vectors {v ,w , u}:
Linearly dependent: w is in
Span{v} (and vice-versa).

Observe: If a set of vectors is
linearly dependent, then so is
any set of vectors that contains
it!



Linear Independence
Pictures in R3
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In this picture

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.



Linear Independence
Pictures in R3
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Span{v}

Span{w}

Span{v ,w}
In this picture

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , u}:
Linearly independent: no one is
in the span of the other two.



Linear Independence
Pictures in R3
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Span{v}

Span{w}

Span{v ,w}
In this picture

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , x}:
Linearly dependent: x is in
Span{v ,w}.



Are there four vectors u, v ,w , x in R3 which are linearly depen-
dent, but such that u is not a linear combination of v ,w , x? If
so, draw a picture; if not, give an argument.

Poll

Yes: actually the pictures on the previous slides provide such an example.

Linear dependence of {v1, . . . , vp} means some vi is a linear combination of the
others, not any.



Linear Independence
Stronger criterion

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.

Take the largest j such that vj is in the span of the others. Then vj is in the
span of v1, v2, . . . , vj−1. Why? If not (j = 3):

v3 = 2v1 − 1

2
v2 + 6v4

Rearrange:

v4 = −1

6

(
2v1 − 1

2
v2 − v3

)

so v4 works as well, but v3 was supposed to be the last one that was in the
span of the others.

Better Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if there is
some j such that vj is in Span{v1, v2, . . . , vj−1}.



Linear Independence
Increasing span criterion

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if there is
some j such that vj is in Span{v1, v2, . . . , vj−1}.

Equivalently, {v1, v2, . . . , vp} is linearly independent if for every j , the vector vj
is not in Span{v1, v2, . . . , vj−1}. This means Span{v1, v2, . . . , vj} is bigger than
Span{v1, v2, . . . , vj−1}.
Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.



Linear Independence
Increasing span criterion: pictures

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.

v

w

Span{v}

One vector {v}:
Linearly independent: span got
bigger (than (0, 0, 0)).

Two vectors {v ,w}:
Linearly independent: span got
bigger.
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One vector {v}:
Linearly independent: span got
bigger (than (0, 0, 0)).

Two vectors {v ,w}:
Linearly independent: span got
bigger.

Three vectors {v ,w , u}:
Linearly independent: span got
bigger.



Linear Independence
Increasing span criterion: pictures

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.
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Span{v}

Span{v ,w , x}
One vector {v}:
Linearly independent: span got
bigger (than (0, 0, 0)).

Two vectors {v ,w}:
Linearly independent: span got
bigger.

Three vectors {v ,w , x}:
Linearly dependent: span didn’t
get bigger.



Checking Linear Independence

Question: Is
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 linearly independent?

Equivalently, does the (homogeneous) the vector equation
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have a nontrivial solution? How do we solve this kind of vector equation?




1 1 3
1 −1 1
1 2 4


 row reduce




1 0 2
0 1 1
0 0 0




So x = −2z and y = −z . So the vectors are linearly dependent, and an
equation of linear dependence is (taking z = 1)
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1 1 3
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
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The trivial solution



x
y
z


 =




0
0
0


 is the unique solution. So the vectors are

linearly independent.



Linear Independence and Matrix Columns

In general, {v1, v2, . . . , vp} is linearly independent if and only if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution, if and only if the matrix equation

Ax = 0

has only the trivial solution, where A is the matrix with columns v1, v2, . . . , vp:

A =



| | |
v1 v2 · · · vp
| | |


 .

This is true if and only if the matrix A has a pivot in each column.

Solving the matrix equation Ax = 0 will either
verify that the columns v1, v2, . . . , vp of A are
linearly independent, or will produce a linear de-
pendence relation.



Linear Independence
Two more facts

Fact 1: Say v1, v2, . . . , vn are in Rm. If n > m then {v1, v2, . . . , vn} is linearly
dependent: the matrix

A =



| | |
v1 v2 · · · vn
| | |


 .

cannot have a pivot in each column (it is too wide).

This says you can’t have 4 linearly independent vectors in R3, for instance.

Fact 2: If one of v1, v2, . . . , vn is zero, then {v1, v2, . . . , vn} is linearly
dependent. For instance, if v1 = 0, then

1 · v1 + 0 · v2 + 0 · v3 + · · ·+ 0 · vn = 0

is a linear dependence relation.



Section 1.8

Introduction to Linear Transformations



Motivation

Let A be an m × n matrix. For the matrix equation Ax = b we have learned to
describe

I the solution set: all x in Rn making the equation true.

I the column span: the set of all b in Rm making the equation consistent.

It turns out these two sets are very closely related to each other.

In order to understand this relationship, it helps to think of the matrix A as a
transformation from Rn to Rm.

It’s a special kind of transformation called a linear transformation.



Transformations

Definition
A transformation (or function or map) from Rn to Rm is a rule T that assigns
to each vector x in Rn a vector T (x) in Rm.

I Rn is called the domain of T .

I Rm is called the codomain of T .

I For x in Rn, the vector T (x) in Rm is the image of x under T .
Notation: x 7→ T (x).

I The set of all images {T (x) | x in Rn} is the range of T .

Notation:

T : Rn −→ Rm means T is a transformation from Rn to Rm.

Rn Rm

domain codomain

T

x

T (x) range

T

It may help to think of T
as a “machine” that takes
x as an input, and gives
you T (x) as the output.



Functions from Calculus

Many of the functions you know and love have domain and codomain R.

sin : R −→ R sin(x) =

(
the length of the opposite edge over the
hypotenuse of a right triangle with angle
x in radians

)

Note how I’ve written down the rule that defines the function sin.

f : R −→ R f (x) = x2

Note that “x2” is sloppy (but common) notation for a function: it doesn’t have
a name!

You may be used to thinking of a function in terms of its graph.

x

(x , sin x) The horizontal axis is the domain, and
the vertical axis is the codomain.

This is fine when the domain and
codomain are R, but it’s hard to do
when they’re R2 and R3! You need five
dimensions to draw that graph.


