Announcements
September 7

▶ Homework 1.3 is due Friday.
▶ Quiz on Friday: section 1.3.
▶ My office hours only today are moved to 10–11am, right after class.
 ▶ As always, TAs’ office hours are posted on the website.
 ▶ Also there are links to other resources like Math Lab.
Section 1.4

The Matrix Equation $Ax = b$
Matrix \times Vector

Let A be an $m \times n$ matrix (m rows, n columns)

$$A = \begin{pmatrix}
\vdots \\
v_1 & v_2 & \cdots & v_n \\
\vdots
\end{pmatrix}$$

with columns v_1, v_2, \ldots, v_n

Definition

The product of A with a vector x in \mathbb{R}^n is the linear combination

$$Ax = \begin{pmatrix}
\vdots \\
v_1 & v_2 & \cdots & v_n \\
\vdots
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} := x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

The output is a vector in \mathbb{R}^m.

Note that the number of *columns* of A has to equal the number of *rows* of x.

Example

$$\begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} 4 \\ 7 \end{pmatrix} + 2 \begin{pmatrix} 5 \\ 8 \end{pmatrix} + 3 \begin{pmatrix} 6 \\ 9 \end{pmatrix} = \begin{pmatrix} 32 \\ 50 \end{pmatrix}.$$
Question
Let v_1, v_2, v_3 be vectors in \mathbb{R}^3. How can you write the vector equation

$$2v_1 + 3v_2 - 4v_3 = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix}$$

in terms of matrix multiplication?

Answer: Let A be the matrix with columns v_1, v_2, v_3, and let x be the vector with entries $2, 3, -4$. Then

$$Ax = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = 2v_1 + 3v_2 - 4v_3,$$

so the vector equation is equivalent to the matrix equation

$$Ax = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix}.$$
Matrix Equations
In General

Let v_1, v_2, \ldots, v_n, and b be vectors in \mathbb{R}^m. Consider the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = b.$$

It is equivalent to the matrix equation

$$Ax = b$$

where

$$A = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$$

and

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Conversely, if A is any $m \times n$ matrix, then

$$Ax = b$$

is equivalent to the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = b$$

where v_1, \ldots, v_n are the columns of A, and x_1, \ldots, x_n are the entries of x.
We now have four equivalent ways of writing (and thinking about) linear systems:

1. As a system of equations:

 \[
 2x_1 + 3x_2 = 7 \\
 x_1 - x_2 = 5
 \]

2. As an augmented matrix:

 \[
 \begin{pmatrix}
 2 & 3 & | & 7 \\
 1 & -1 & | & 5
 \end{pmatrix}
 \]

3. As a vector equation \((x_1v_1 + \cdots + x_nv_n = b)\):

 \[
 x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}
 \]

4. As a matrix equation \((Ax = b)\):

 \[
 \begin{pmatrix}
 2 & 3 \\
 1 & -1
 \end{pmatrix}
 \begin{pmatrix}
 x_1 \\
 x_2
 \end{pmatrix} = \begin{pmatrix}
 7 \\
 5
 \end{pmatrix}
 \]

In particular, all four have the same solution set. We will go back and forth freely between these over and over again, for the rest of the semester.
Definition

A **row vector** is a matrix with one row. The product of a row vector of length n and a (column) vector of length n is

\[
(a_1 \cdots a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} := a_1 x_1 + \cdots + a_n x_n.
\]

This is a scalar.

If A is an $m \times n$ matrix with rows r_1, r_2, \ldots, r_m, and x is a vector in \mathbb{R}^n, then

\[
Ax = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix} x = \begin{pmatrix} r_1 x \\ r_2 x \\ \vdots \\ r_m x \end{pmatrix}
\]

This is a vector in \mathbb{R}^m (again).
Example

\[
\begin{pmatrix}
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
= \begin{pmatrix}
4 \cdot 1 + 5 \cdot 2 + 6 \cdot 3 \\
7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3
\end{pmatrix}
= \begin{pmatrix}
32 \\
50
\end{pmatrix}.
\]

Note this is the same as before:

\[
\begin{pmatrix}
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
= 1 \begin{pmatrix}
4 \\
7
\end{pmatrix} + 2 \begin{pmatrix}
5 \\
8
\end{pmatrix} + 3 \begin{pmatrix}
6 \\
9
\end{pmatrix}
= \begin{pmatrix}
1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 \\
1 \cdot 7 + 2 \cdot 8 + 3 \cdot 9
\end{pmatrix}
= \begin{pmatrix}
32 \\
50
\end{pmatrix}.
\]

Now you have two ways of computing Ax. In the second, you calculate Ax one entry at a time.

Try both and decide which is your favorite!
Spans and Solutions to Equations

Let A be a matrix with columns v_1, v_2, \ldots, v_n:

$$A = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$$

Ax = b has a solution \iff there exist x_1, \ldots, x_n such that $A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b$ \iff there exist x_1, \ldots, x_n such that $x_1 v_1 + \cdots + x_n v_n = b$ \iff b is a linear combination of v_1, \ldots, v_n \iff b is in the span of the columns of A.

Very Important

"if and only if"

The last condition is very geometric.
Question

Let \(A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} \). Does the equation \(Ax = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \) have a solution?

Columns of \(A \):

\[
\begin{align*}
 v & = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\
 w & = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}
\end{align*}
\]

Solution vector:

\[
 b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
\]

Is \(b \) contained in the span of the columns of \(A \)?
It sure doesn’t look like it.
Question

Let \(A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} \). Does the equation \(Ax = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \) have a solution?

Answer: Let’s check by solving the matrix equation using row reduction. The first step is to put the system into an augmented matrix.

\[
\begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

The last equation is \(0 = 1 \), so the system is *inconsistent*. In other words, the matrix equation

\[
\begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
\]

has no solution, as we guessed.
Example

Question
Let \(A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} \). Does the equation \(Ax = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \) have a solution?

Columns of \(A \):
\[
\begin{align*}
v &= \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\
w &= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}
\end{align*}
\]

Solution vector:
\[
b = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}
\]

Is \(b \) contained in the span of the columns of \(A \)?
It looks like it. Can you see what \(x \) is from the grid on \(\text{Span}\{v, w\} \)?
Question

Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's do this systematically using row reduction.

$$
\begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \quad \text{row reduce} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}
$$

This gives us

$$x = 1 \quad y = -1.$$

In other words,

$$1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \quad \text{or} \quad A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. $$
Which of the following true statements can be checked by eye-balling them, *without* row reduction?

<table>
<thead>
<tr>
<th>Option</th>
<th>Statement</th>
<th>Basis Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>((0, 1, 2, 0)) is in the span of ((3, 10, -2)), ((0, 10, -2)), ((-1)).</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>((0, 1, 2, 0)) is in the span of ((3, 5, 6)), ((3, 7, 8)), ((-1)).</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>((0, 1, 2, 0)) is in the span of ((3, 1, 0)), ((3, 4, \sqrt{2})), ((-1)).</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>((0, 1, 2, 0)) is in the span of ((5, 6, 3)), ((7, 8, 3)), ((-1)).</td>
<td></td>
</tr>
</tbody>
</table>
Here are criteria for a linear system to always have a solution.

Theorem
Let \(A \) be an \(m \times n \) (non-augmented) matrix. The following are equivalent (either they're all true, or they're all false):

1. \(Ax = b \) has a solution for all \(b \) in \(\mathbb{R}^m \).
2. The span of the columns of \(A \) is all of \(\mathbb{R}^m \).
3. \(A \) has a pivot in each row.

Why is (1) the same as (2)? Why is (1) the same as (3)? If \(A \) has a pivot in each row then its reduced row echelon form looks like this:

\[
\begin{pmatrix}
1 & 0 & \ast & 0 & \ast \\
0 & 1 & \ast & 0 & \ast \\
0 & 0 & 0 & 1 & \ast
\end{pmatrix}
\]

and \((A | b) \) reduces to this:

\[
\begin{pmatrix}
1 & 0 & \ast & 0 & \ast & | \\
0 & 1 & \ast & 0 & \ast & | \\
0 & 0 & 0 & 1 & \ast & | \\
\end{pmatrix}.
\]

There's no \(b \) that makes it inconsistent, so there's always a solution. If \(A \) doesn't have a pivot in each row, then its reduced form looks like this:

\[
\begin{pmatrix}
1 & 0 & \ast & 0 & \ast \\
0 & 1 & \ast & 0 & \ast \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

and this can be made inconsistent:

\[
\begin{pmatrix}
1 & 0 & \ast & 0 & \ast & | 0 \\
0 & 1 & \ast & 0 & \ast & | 0 \\
0 & 0 & 0 & 0 & 0 & | 16
\end{pmatrix}.
\]
Properties of the Matrix–Vector Product

Let \(c \) be a scalar, \(u, v \) be vectors, and \(A \) a matrix.

\[A(u + v) = Au + Av \]
\[A(cv) = cAv \]

See Lay, §1.4, Theorem 5.

For instance, \(A(3u - 7v) = 3Au - 7Av \).

Consequence: If \(u \) and \(v \) are solutions to \(Ax = 0 \), then so is every vector in \(\text{Span}\{u, v\} \). Why?

\[
\begin{align*}
Au &= 0 \\
Av &= 0
\end{align*}
\] \[A(xu + yv) = xAu + yAv = x0 + y0 = 0. \]

(Here 0 means the zero vector.)

Important

The set of solutions to \(Ax = 0 \) is a span.