1. Find the parametric form for the general solution to the following system of equations, if such a solution exists:

\[
\begin{align*}
 x_1 + x_2 + x_3 - x_4 &= -3 \\
 2x_1 + 3x_2 + x_3 - 5x_4 &= -9 \\
 x_1 + 3x_2 - x_3 - 6x_4 &= 7
\end{align*}
\]

\[
\begin{align*}
 (x_1, x_2, x_3, x_4) = (?, ?, ?, ?).
\end{align*}
\]

2. Write \(\begin{pmatrix} 6 \\ 11 \\ 6 \end{pmatrix} \) as a linear combination of the vectors

\[
u = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} \quad v = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \quad w = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}.
\]

3. Decide if each of the following statements is true or false. If it is true, prove it; if it is false, provide a counterexample.

a) Every set of four or more vectors in \(\mathbb{R}^3 \) will span \(\mathbb{R}^3 \).

b) The span of any set (including the empty set!) contains the zero vector.