- ▶ Homeworks 1.1 and 1.2 are due Friday.
- ▶ The first quiz is on Friday, during recitation.
 - Quizzes mostly test your understanding of the homework.
 - ▶ There will generally be a quiz every Friday when there's no midterm.
 - Check the schedule if you want to know what will be covered.
- My office hours, and those of the teaching assistants, are posted on the website.
 - ▶ Many other resources are also contained in the "Help" tab of the website.
 - This includes Math Lab (not to be confused with MyMathLab), a free one-on-many tutoring service, open for many hours most days, provided by the School of Math.

Section 1.3

Vector Equations

Motivation

We want to think about the *algebra* in linear algebra (systems of equations and their solution sets) in terms of *geometry* (points, lines, planes, etc).

This will give us better insight into the properties of systems of equations and their solution sets.

To do this, we need to introduce n-dimensional space \mathbb{R}^n , and vectors inside it.

Recall that ${\bf R}$ denotes the collection of all real numbers, i.e. the number line.

Definition

Let n be a positive whole number. We define

$$\mathbf{R}^n$$
 = all ordered *n*-tuples of real numbers $(x_1, x_2, x_3, \dots, x_n)$.

Example

When n = 1, we just get **R** back: $\mathbf{R}^1 = \mathbf{R}$. Geometrically, this is the *number line*.

Example

When n = 2, we can think of \mathbf{R}^2 as the *plane*. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its *x*-and *y*-coordinates.

We can use the elements of \mathbf{R}^2 to *label* points on the plane, but \mathbf{R}^2 is not defined to be the plane!

Example

When n=3, we can think of ${\bf R}^3$ as the *space* we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its x-, y-, and z-coordinates.

So what is \mathbb{R}^4 ? or \mathbb{R}^5 ? or \mathbb{R}^n ?

 \dots go back to the *definition*: ordered *n*-tuples of real numbers

$$(x_1, x_2, x_3, \ldots, x_n).$$

They're still "geometric" spaces, in the sense that our intuition for \mathbf{R}^2 and \mathbf{R}^3 sometimes extends to \mathbf{R}^n , but they're harder to visualize.

We'll make definitions and state theorems that apply to any \mathbf{R}^n , but we'll only draw pictures for \mathbf{R}^2 and \mathbf{R}^3 .

Vectors

In the previous slides, we were thinking of elements of \mathbf{R}^n as **points**: in the line, plane, space, etc.

We can also think of them as vectors: arrows with a given length and direction.

So the vector points *horizontally* in the amount of its *x*-coordinate, and *vertically* in the amount of its *y*-coordinate.

When we think of an element of \mathbf{R}^n as a vector, we write it as a matrix with n rows and one column:

$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

We'll see why this is useful later.

Points and Vectors

So what is the difference between a point and a vector?

A vector need not start at the origin: it can be located anywhere! In other words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector $\begin{pmatrix} 1\\2 \end{pmatrix}$. (However, unless otherwise specified, we'll assume a vector starts at the origin.)

This makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.

Another way to think about it: a vector is a *difference* between two points, or the arrow from one point to another.

For instance, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is the arrow from (0,1) to (1,3).

Vector Algebra

Definition

▶ We can add two vectors together:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a+x \\ b+y \\ c+z \end{pmatrix}.$$

▶ We can multiply, or **scale**, a vector by a real number c:

$$c\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} c \cdot x \\ c \cdot y \\ c \cdot z \end{pmatrix}.$$

We call c a scalar to distinguish it from a vector. If v is a vector and c is a scalar, cv is called a scalar multiple of v.

(And likewise for vectors of length n.) For instance,

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix} \quad \text{ and } \quad -2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ -6 \end{pmatrix}.$$

Vector Addition: Geometry

The parallelogram law for vector addition

Geometrically, the sum of two vectors v, w is obtained as follows: place the tail of w at the head of v. Then v+w is the vector whose tail is the tail of v and whose head is the head of w. For example,

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}.$$

Why? The width of v + w is the sum of the widths, and likewise with the heights.

This works in higher dimensions too!

Scalar Multiplication: Geometry

Scalar multiples of a vector

These have the same *direction* but a different *length*.

So the multiples of v form a *line*.

Linear Combinations

We can add and scalar multiply in the same equation:

$$w = c_1 v_1 + c_2 v_2 + \cdots + c_p v_p$$

where c_1, \ldots, c_p are scalars, v_1, \ldots, v_p are vectors in \mathbf{R}^n , and w is a vector in \mathbf{R}^n .

Definition

We call w a linear combination of the vectors v_1, \ldots, v_p (with weights c_1, \ldots, c_p).

Example

Let $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. What are some linear combinations of v and w?

- ► v + w
- V − W
- ► 2v + 0w
- ▶ 2w
- -v

Poll Is there any vector in \mathbb{R}^2 that is *not* a linear combination of v and w?

No: in fact, every vector in \mathbb{R}^2 is a combination of v and w.

More Examples

What are some linear combinations of $v = \binom{2}{1}$?

- $ightharpoonup \frac{3}{2}V$
- $ightharpoonup -\frac{1}{2}v$
- **...**

What are all linear combinations of v? All vectors cv for c a real number. I.e., all scalar multiples of v. These form a line.

Question

What are all linear combinations of $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

and
$$w = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
?

Answer: The line which contains both vectors.

What's different about this example and the one on the poll?

Systems of Linear Equations

Question

Is
$$\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$?

This means: can we solve the equation

$$x \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + y \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$$

where x and y are the unknowns (the scalars)? Rewrite:

$$\begin{pmatrix} x \\ 2x \\ 6x \end{pmatrix} + \begin{pmatrix} -y \\ -2y \\ -y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} x-y \\ 2x-2y \\ 6x-y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}.$$

This is just a system of linear equations:

$$x - y = 8$$
$$2x - 2y = 16$$
$$6x - y = 3$$

Systems of Linear Equations

$$x - y = 8$$

$$2x - 2y = 16$$

$$6x - y = 3$$

$$row reduce$$

$$solution$$

$$solution$$

$$y = -9$$

$$x - y = 8$$

$$2 - 2 = 16$$

$$6 - 1 = 3$$

$$\begin{cases} 1 & 0 = -1 \\ 0 & 1 = -9 \\ 0 & 0 = 0 \end{cases}$$

$$x = -1$$

$$y = -9$$

Conclusion:

$$-\begin{pmatrix}1\\2\\6\end{pmatrix}-9\begin{pmatrix}-1\\-2\\-1\end{pmatrix}=\begin{pmatrix}8\\16\\3\end{pmatrix}$$

What is the relationship between the original vectors and the matrix form of the linear equation? They have the same columns!

Shortcut: You can make the augmented matrix without writing down the system of linear equations first.

Vector Equations and Linear Equations

Summary

The vector equation

$$x_1v_1+\cdots+x_pv_p=b,$$

where v_1, \ldots, v_p, b are vectors in \mathbf{R}^n and x_1, \ldots, x_p are scalars, has the same solution set as the linear system with augmented matrix

$$(v_1 \cdots v_p \mid b),$$

where the v_i 's and b are the columns of the matrix.

So we now have (at least) *two* alternative ways of thinking about linear systems of equations:

- 1. Augmented matrices.
- 2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.

It is important to know what are *all* linear combinations of a set of vectors v_1, \ldots, v_p in \mathbb{R}^n : it's exactly the collection of all b in \mathbb{R}^n such that the vector equation

$$x_1v_1+\cdots+x_pv_p=b$$

has a solution (i.e., is consistent).

"the set of" "such that"

Definition

Let v_1, \ldots, v_p be vectors in \mathbb{R}^n . The span of v_1, \ldots, v_p is the set of all linear combinations of v_1, \ldots, v_p , and is denoted $\text{Span}\{v_1, \ldots, v_p\}$. In symbols:

$$\Rightarrow Span\{v_1,\ldots,v_p\} = \{x_1v_1 + \cdots + x_pv_p \mid x_1,\ldots,x_p \text{ in } \mathbf{R}\}.$$

Synonyms: Span $\{v_1, \ldots, v_p\}$ is the subset spanned by or generated by v_1, \ldots, v_p .

This is the first of several definitions in this class that you simply **must learn**. I will give you other ways to think about Span, and ways to draw pictures, but *this is the definition*. Having a vague idea what Span means will not help you solve any exam problems!

Now we have several equivalent ways of making the same statement:

- 1. A vector b is in the span of v_1, \ldots, v_p .
- 2. The linear system with augmented matrix

$$(v_1 \cdots v_p \mid b)$$

is consistent.

3. The vector equation

$$x_1v_1 + \cdots + x_pv_p = b$$

has a solution.

Pictures of Span

Drawing a picture of Span $\{v_1,\ldots,v_p\}$ is the same as drawing a picture of all linear combinations of v_1,\ldots,v_p .

Pictures of Span In R³

Poll

How many vectors are in $Span\{0\}$? Here

0 denotes the zero vector

In general, it appears that $Span\{v_1, \ldots, v_p\}$ is the smallest "linear space" (line, plane, etc.) containing the origin and all of the vectors v_1, \ldots, v_p .

We will make this precise later.