Announcements

- Homeworks 1.1 and 1.2 are due Friday.
- The first quiz is on Friday, during recitation.
- Quizzes mostly test your understanding of the homework.
- There will generally be a quiz every Friday when there's no midterm.
- Check the schedule if you want to know what will be covered.
- My office hours, and those of the teaching assistants, are posted on the website.
- Many other resources are also contained in the "Help" tab of the website.
- This includes Math Lab (not to be confused with MyMathLab), a free one-on-many tutoring service, open for many hours most days, provided by the School of Math.

Section 1.3

Vector Equations

Motivation

We want to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes, etc).

This will give us better insight into the properties of systems of equations and their solution sets.

To do this, we need to introduce n-dimensional space \mathbf{R}^{n}, and vectors inside it.

Line, Plane, Space, ...

Recall that \mathbf{R} denotes the collection of all real numbers, i.e. the number line.

Definition

Let n be a positive whole number. We define

$$
\mathbf{R}^{n}=\text { all ordered } n \text {-tuples of real numbers }\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

Example

When $n=1$, we just get \mathbf{R} back: $\mathbf{R}^{1}=\mathbf{R}$. Geometrically, this is the number line.

Line, Plane, Space, ...

Continued

Example

When $n=2$, we can think of \mathbf{R}^{2} as the plane. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its x and y-coordinates.

We can use the elements of \mathbf{R}^{2} to label points on the plane, but \mathbf{R}^{2} is not defined to be the plane!

Line, Plane, Space, ...

Continued

Example

When $n=3$, we can think of \mathbf{R}^{3} as the space we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its $x-, y$-, and z-coordinates.

Line, Plane, Space, ...

So what is \mathbf{R}^{4} ? or \mathbf{R}^{5} ? or \mathbf{R}^{n} ?
... go back to the definition: ordered n-tuples of real numbers

$$
\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

They're still "geometric" spaces, in the sense that our intuition for \mathbf{R}^{2} and \mathbf{R}^{3} sometimes extends to \mathbf{R}^{n}, but they're harder to visualize.

We'll make definitions and state theorems that apply to any \mathbf{R}^{n}, but we'll only draw pictures for \mathbf{R}^{2} and \mathbf{R}^{3}.

Vectors

In the previous slides, we were thinking of elements of \mathbf{R}^{n} as points: in the line, plane, space, etc.

We can also think of them as vectors: arrows with a given length and direction.

So the vector points horizontally in the amount of its x-coordinate, and vertically in the amount of its y-coordinate.

When we think of an element of \mathbf{R}^{n} as a vector, we write it as a matrix with n rows and one column:

$$
v=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

We'll see why this is useful later.

Points and Vectors

So what is the difference between a point and a vector?
A vector need not start at the origin: it can be located anywhere! In other words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector $\binom{1}{2}$. (However, unless otherwise specified, we'll assume a vector starts at the origin.)

This makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.

Another way to think about it: a vector is a difference between two points, or the arrow from one point to another.
For instance, $\binom{1}{2}$ is the arrow from $(0,1)$ to $(1,3)$.

Vector Algebra

Definition

- We can add two vectors together:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a+x \\
b+y \\
c+z
\end{array}\right)
$$

- We can multiply, or scale, a vector by a real number c :

$$
c\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
c \cdot x \\
c \cdot y \\
c \cdot z
\end{array}\right) .
$$

We call c a scalar to distinguish it from a vector. If v is a vector and c is a scalar, $c v$ is called a scalar multiple of v.
(And likewise for vectors of length n.) For instance,

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{l}
5 \\
7 \\
9
\end{array}\right) \quad \text { and } \quad-2\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right)
$$

Vector Addition: Geometry

The parallelogram law for vector addition
Geometrically, the sum of two vectors v, w is obtained as follows: place the tail of w at the head of v. Then $v+w$ is the vector whose tail is the tail of v and whose head is the head of w. For example,

$$
\binom{1}{3}+\binom{4}{2}=\binom{5}{5}
$$

Why? The width of $v+w$ is the sum of the widths, and likewise with the heights.

This works in higher dimensions too!

Scalar Multiplication: Geometry

Scalar multiples of a vector
These have the same direction but a different length.
Some multiples of v.

$$
\begin{aligned}
& v=\binom{1}{2} \\
& 2 v=\binom{2}{4} \\
& -\frac{1}{2} v=\binom{-\frac{1}{2}}{-1} \\
& 0 v=\binom{0}{0}
\end{aligned}
$$

All multiples of v.

So the multiples of v form a line.

Linear Combinations

We can add and scalar multiply in the same equation:

$$
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}
$$

where c_{1}, \ldots, c_{p} are scalars, v_{1}, \ldots, v_{p} are vectors in \mathbf{R}^{n}, and w is a vector in \mathbf{R}^{n}.

Definition

We call w a linear combination of the vectors v_{1}, \ldots, v_{p} (with weights c_{1}, \ldots, c_{p}).

Example

Let $v=\binom{1}{2}$ and $w=\binom{1}{0}$. What are some linear combinations of v and w ?

- $v+w$
- $v-w$
- $2 v+0 w$
- $2 w$
$-\quad-v$

Poll

Is there any vector in \mathbf{R}^{2} that is not a linear combination of v and w ?

No: in fact, every vector in \mathbf{R}^{2} is a combination of v and w.

More Examples

What are some linear combinations of $v=\binom{2}{1}$?

- $\frac{3}{2} v$
- $-\frac{1}{2} v$
- ...

What are all linear combinations of v ?
All vectors $c v$ for c a real number. I.e., all scalar multiples of v. These form a line.

Question

What are all linear combinations of $v=\binom{2}{2}$ and $w=\binom{-1}{-1}$?

Answer: The line which contains both vectors.
What's different about this example and the one on the poll?

Systems of Linear Equations

Question
Is $\left(\begin{array}{c}8 \\ 16 \\ 3\end{array}\right)$ a linear combination of $\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right)$?
This means: can we solve the equation

$$
x\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)+y\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

where x and y are the unknowns (the scalars)? Rewrite:

$$
\left(\begin{array}{c}
x \\
2 x \\
6 x
\end{array}\right)+\left(\begin{array}{c}
-y \\
-2 y \\
-y
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{c}
x-y \\
2 x-2 y \\
6 x-y
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right) .
$$

This is just a system of linear equations:

$$
\begin{aligned}
x-y & =8 \\
2 x-2 y & =16 \\
6 x-y & =3
\end{aligned}
$$

Systems of Linear Equations

Continued

$$
\begin{array}{ccc}
\begin{array}{c}
x-y=8 \\
2 x-2 y=16 \\
6 x-y=3
\end{array} & \text { matrix form } \\
\text { mammum }
\end{array} \quad\left(\begin{array}{rr|r}
1 & -1 & 8 \\
2 & -2 & 16 \\
6 & -1 & 3
\end{array}\right)
$$

Conclusion:

$$
-\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)-9\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

What is the relationship between the original vectors and the matrix form of the linear equation? They have the same columns!

Shortcut: You can make the augmented matrix without writing down the system of linear equations first.

Vector Equations and Linear Equations

Summary

The vector equation

$$
x_{1} v_{1}+\cdots+x_{p} v_{p}=b
$$

where v_{1}, \ldots, v_{p}, b are vectors in \mathbf{R}^{n} and x_{1}, \ldots, x_{p} are scalars, has the same solution set as the linear system with augmented matrix

$$
\left(v_{1} \cdots v_{p} \mid b\right)
$$

where the v_{i} 's and b are the columns of the matrix.

So we now have (at least) two alternative ways of thinking about linear systems of equations:

1. Augmented matrices.
2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.

Span

It is important to know what are all linear combinations of a set of vectors v_{1}, \ldots, v_{p} in \mathbf{R}^{n} : it's exactly the collection of all b in \mathbf{R}^{n} such that the vector equation

$$
x_{1} v_{1}+\cdots+x_{p} v_{p}=b
$$

has a solution (i.e., is consistent).

Definition

"the set of" "such that"
Let v_{1}, \ldots, v_{p} be vectors in \mathbf{R}^{p}. The span of v_{1}, \ldots, v_{p} is the set of all linear combinations of v_{1}, \ldots, v_{p}, and is denoted $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$. In symbols:

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}=\left\{x_{1} v_{1}+\cdots+x_{p} v_{p} \mid x_{1}, \ldots, x_{p} \text { in } \mathbf{R}\right\} .
$$

Synonyms: $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is the subset spanned by or generated by v_{1}, \ldots, v_{p}.

This is the first of several definitions in this class that you simply must learn. I will give you other ways to think about Span, and ways to draw pictures, but this is the definition. Having a vague idea what Span means will not help you solve any exam problems!

Span

Now we have several equivalent ways of making the same statement:

1. A vector b is in the span of v_{1}, \ldots, v_{p}.
2. The linear system with augmented matrix

$$
\left(v_{1} \cdots v_{p} \mid b\right)
$$

is consistent.
3. The vector equation

$$
x_{1} v_{1}+\cdots+x_{p} v_{p}=b
$$

has a solution.

Pictures of Span

Drawing a picture of $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is the same as drawing a picture of all linear combinations of v_{1}, \ldots, v_{p}.

Pictures of Span

$\ln \mathrm{R}^{3}$

$$
\begin{aligned}
& \text { Holl } \\
& 0 \text { denotes the zero vector }\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text {. } \\
& \text { A. Zero } \\
& \text { B. One } \\
& \text { C. Infinity }
\end{aligned}
$$

In general, it appears that $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$ is the smallest "linear space" (line, plane, etc.) containing the origin and all of the vectors v_{1}, \ldots, v_{p}.

We will make this precise later.

