
Announcements
August 31

I Homeworks 1.1 and 1.2 are due Friday.

I The first quiz is on Friday, during recitation.
I Quizzes mostly test your understanding of the homework.
I There will generally be a quiz every Friday when there’s no midterm.
I Check the schedule if you want to know what will be covered.

I My office hours, and those of the teaching assistants, are posted on the
website.

I Many other resources are also contained in the “Help” tab of the website.
I This includes Math Lab (not to be confused with MyMathLab), a free

one-on-many tutoring service, open for many hours most days, provided by
the School of Math.



Section 1.3

Vector Equations



Motivation

We want to think about the algebra in linear algebra (systems of equations and
their solution sets) in terms of geometry (points, lines, planes, etc).
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This will give us better insight into the properties of systems of equations and
their solution sets.

To do this, we need to introduce n-dimensional space Rn, and vectors inside it.



Line, Plane, Space, . . .

Recall that R denotes the collection of all real numbers, i.e. the number line.

Definition
Let n be a positive whole number. We define

Rn = all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

Example

When n = 1, we just get R back: R1 = R. Geometrically, this is the number
line.

−3 −2 −1 0 1 2 3



Line, Plane, Space, . . .
Continued

Example

When n = 2, we can think of R2 as the plane. This is because every point on
the plane can be represented by an ordered pair of real numbers, namely, its x-
and y -coordinates.

(1, 2)

(0,−3)

We can use the elements of R2 to label points on the plane, but R2 is not
defined to be the plane!



Line, Plane, Space, . . .
Continued

Example

When n = 3, we can think of R3 as the space we (appear to) live in. This is
because every point in space can be represented by an ordered triple of real
numbers, namely, its x-, y -, and z-coordinates.

(1,−1, 3)

(−2, 2, 2)



Line, Plane, Space, . . .
Continued

So what is R4? or R5? or Rn?
. . . go back to the definition: ordered n-tuples of real numbers

(x1, x2, x3, . . . , xn).

They’re still “geometric” spaces, in the sense that our intuition for R2 and R3

sometimes extends to Rn, but they’re harder to visualize.

We’ll make definitions and state theorems that apply to any Rn, but we’ll only
draw pictures for R2 and R3.



Vectors

In the previous slides, we were thinking of elements of Rn as points: in the line,
plane, space, etc.

We can also think of them as vectors: arrows with a given length and direction.

the point (1, 3)

the vector (1, 3)

So the vector points horizontally in the amount of its x-coordinate, and
vertically in the amount of its y -coordinate.

When we think of an element of Rn as a vector, we write it as a matrix with n
rows and one column:

v =




1
2
3


 .

We’ll see why this is useful later.



Points and Vectors

So what is the difference between a point and a vector?

A vector need not start at the origin: it can be located anywhere! In other
words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector

(
1
2

)
.

(However, unless otherwise specified, we’ll as-
sume a vector starts at the origin.)

This makes sense in the real world: many physical quantities, such as velocity,
are represented as vectors. But it makes more sense to think of the velocity of
a car as being located at the car.

Another way to think about it: a vector is a difference between two points, or
the arrow from one point to another.

For instance,

(
1
2

)
is the arrow from (0, 1) to (1, 3).



Vector Algebra

Definition

I We can add two vectors together:


a
b
c


+



x
y
z


 =



a + x
b + y
c + z


 .

I We can multiply, or scale, a vector by a real number c:

c



x
y
z


 =



c · x
c · y
c · z


 .

We call c a scalar to distinguish it from a vector. If v is a vector and c is
a scalar, cv is called a scalar multiple of v .

(And likewise for vectors of length n.) For instance,



1
2
3


+




4
5
6


 =




5
7
9


 and − 2




1
2
3


 =



−2
−4
−6


 .



Vector Addition: Geometry

5 = 1 + 4 = 4 + 1

5
=

2
+

3
=

3
+

2

The parallelogram law for vector addition
Geometrically, the sum of two vectors v ,w is
obtained as follows: place the tail of w at the
head of v . Then v + w is the vector whose tail
is the tail of v and whose head is the head of w .
For example,

(
1
3

)
+

(
4
2

)
=

(
5
5

)
.

Why? The width of v + w is the sum of the
widths, and likewise with the heights.

This works in higher dimensions too!



Scalar Multiplication: Geometry

Scalar multiples of a vector
These have the same direction but a different length.

Some multiples of v .

v

2v

− 1
2
v

0v

v =

(
1
2

)

2v =

(
2
4

)

− 1
2
v =

(
− 1

2

−1

)

0v =

(
0
0

)

All multiples of v .

So the multiples of v form a line.



Linear Combinations

We can add and scalar multiply in the same equation:

w = c1v1 + c2v2 + · · ·+ cpvp

where c1, . . . , cp are scalars, v1, . . . , vp are vectors in Rn, and w is a vector in
Rn.

Definition
We call w a linear combination of the vectors v1, . . . , vp (with weights
c1, . . . , cp).

Example

Let v =

(
1
2

)
and w =

(
1
0

)
. What are some

linear combinations of v and w?

I v + w

I v − w

I 2v + 0w

I 2w

I −v



Is there any vector in R2 that is not a linear
combination of v and w?

Poll

No: in fact, every vector in R2 is a combination of v and w .

v

w



More Examples

What are some linear combinations of v =

(
2
1

)
?

I 3
2
v

I − 1
2
v

I . . .

What are all linear combinations of v?
All vectors cv for c a real number. I.e., all scalar
multiples of v . These form a line.

Question

What are all linear combinations of v =

(
2
2

)

and w =

(
−1
−1

)
?

Answer: The line which contains both vectors.

What’s different about this example and the one
on the poll?



Systems of Linear Equations

Question

Is




8
16
3


 a linear combination of




1
2
6


 and



−1
−2
−1


?

This means: can we solve the equation

x




1
2
6


+ y



−1
−2
−1


 =




8
16
3




where x and y are the unknowns (the scalars)? Rewrite:




x
2x
6x


+



−y
−2y
−y


 =




8
16
3


 or




x − y
2x − 2y
6x − y


 =




8
16
3


 .

This is just a system of linear equations:

x − y = 8

2x − 2y = 16

6x − y = 3



Systems of Linear Equations
Continued

x − y = 8

2x − 2y = 16

6x − y = 3

matrix form



1 − 1 8
2 − 2 16
6 − 1 3




row reduce



1 0 −1
0 1 −9
0 0 0




solution x = −1

y = −9
Conclusion:

−




1
2
6


− 9



−1
−2
−1


 =




8
16
3




What is the relationship between the original vectors and the matrix form of
the linear equation? They have the same columns!

Shortcut: You can make the augmented matrix without writing down the
system of linear equations first.



Vector Equations and Linear Equations

The vector equation

x1v1 + · · ·+ xpvp = b,

where v1, . . . , vp, b are vectors in Rn and x1, . . . , xp are scalars,
has the same solution set as the linear system with augmented
matrix (

v1 · · · vp
∣∣ b
)
,

where the vi ’s and b are the columns of the matrix.

Summary

So we now have (at least) two alternative ways of thinking about linear systems
of equations:

1. Augmented matrices.

2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.



Span

It is important to know what are all linear combinations of a set of vectors
v1, . . . , vp in Rn: it’s exactly the collection of all b in Rn such that the vector
equation

x1v1 + · · ·+ xpvp = b

has a solution (i.e., is consistent).

Definition
Let v1, . . . , vp be vectors in Rn. The span of v1, . . . , vp is the set of all linear
combinations of v1, . . . , vp, and is denoted Span{v1, . . . , vp}. In symbols:

Span{v1, . . . , vp} =
{
x1v1 + · · ·+ xpvp

∣∣ x1, . . . , xp in R
}

.

Synonyms: Span{v1, . . . , vp} is the subset spanned by or generated by
v1, . . . , vp.

This is the first of several definitions in this class that you simply must
learn. I will give you other ways to think about Span, and ways to draw
pictures, but this is the definition. Having a vague idea what Span means
will not help you solve any exam problems!

“such that”“the set of”



Span
Continued

Now we have several equivalent ways of making the same statement:

1. A vector b is in the span of v1, . . . , vp.

2. The linear system with augmented matrix

(
v1 · · · vp

∣∣ b
)

is consistent.

3. The vector equation
x1v1 + · · ·+ xpvp = b

has a solution.



Pictures of Span

Drawing a picture of Span{v1, . . . , vp} is the same as drawing a picture of all
linear combinations of v1, . . . , vp.

Span{v}

v

Span{v ,w}

v

w

Span{v ,w}

v

w



Pictures of Span
In R3

Span{v}
v

Span{v ,w}
v

w

v

w

u

Span{v ,w , u} Span{v ,w , u}
v

w

u



How many vectors are in Span{0}? Here

0 denotes the zero vector




0
0
0


.

A. Zero

B. One

C. Infinity

Poll

In general, it appears that Span{v1, . . . , vp} is the smallest “linear space” (line,
plane, etc.) containing the origin and all of the vectors v1, . . . , vp.

We will make this precise later.


