Math 4803/8803 Homework 9
Due at the beginning of class on Wednesday, October 28.

1. Prove that a Dedekind domain A is a principal ideal domain if and only if it is a unique factorization domain. [To prove \iff, you actually only need to assume that any nonzero element a is a product of prime elements.]

2. Let A be a Dedekind domain with fraction field K and let $a, b \subset K$ be fractional ideals, with duals a^*, b^*. Prove, without doing any computations, that $(ab)^* = a^*b^*$ and that $a^{**} = a$.

3. Let K be a number field, let $p \subset \mathcal{O}_K$ be a nonzero prime ideal, and let p be the prime number such that $p\mathbb{Z} = p \cap \mathbb{Z}$. Prove that the field $k = \mathcal{O}_K / p$ is a finite extension field of \mathbb{F}_p, and that $N(p) = \left[k : \mathbb{F}_p \right]$.

4. Let $K = \mathbb{Q} (\sqrt{d})$ be a quadratic number field. Let $\tau \in \text{Gal}(K/\mathbb{Q})$ be the automorphism sending \sqrt{d} to $-\sqrt{d}$, for $x \in K$ set $\overline{x} := \tau(x)$, and for an ideal $a \subset \mathcal{O}_K$ set $\overline{a} = \tau(a)$. It is a fact that $aa = (n)$ for a unique positive integer n. Prove that $n = N(a)$.

5. Let A be any ring.
 a) Let M be an A-module, let a be an ideal contained in $\text{Ann}(M)$, let $\overline{A} = A / a$, and let $\pi : A \to \overline{A}$ be the quotient homomorphism. Prove that M is an \overline{A}-module via the rule $\pi(a)m := am$.
 b) Let M be an A-module and let $a \subset A$ be an ideal. Show that a is contained in $\text{Ann}(M/aM)$. In particular, if a is a maximal ideal then M/aM is a vector space over A/a.
 c) Let A be an integral domain, let $p \subset A$ be a maximal ideal, and suppose that $\dim_A (p/p^2) \geq 2$. Prove that A is not Dedekind.
 d) Use (c) to give another proof that $K[X^2, X^3]$ is not Dedekind.
 e) Now let A be a Dedekind domain, let $p \subset A$ be a nonzero prime ideal, and suppose that $[p]^2 = [A]$ in $C(A)$. Prove that p can be generated by two elements.

1The Zariski tangent space at the prime ideal p is defined to be the vector space p/p^2. In geometric language, the condition $\dim_A (p/p^2) \geq 2$ says that A is not nonsingular of dimension one at p.

2In fact, any ideal of a Dedekind domain can be generated by two elements, but this requires more commutative algebra background to prove. See Exercise 9.7 in Atiyah–MacDonald’s *Commutative Algebra*.