Exercises in Samuel:
Chapter II #4.

Exercises not from the text:

(1) Let A, B, C be rings, with A a subring of B and B a subring of C.
 (a) Suppose that B is a finitely generated A-module and C is a finitely
 generated B-module. Prove that C is a finitely generated A-module.
 (b) Suppose that B is a finitely generated A-algebra and C is a finitely
 generated B-algebra. Prove that C is a finitely generated A-algebra.
 (c) Find an example of a ring which is a finitely generated \mathbb{Q}-algebra but
 not a finitely generated \mathbb{Q}-module.

(2) Let $\zeta = e^{2\pi i / 5}$. Use the proof of Theorem II.1(c \implies a) to find an explicit
 equation of integral dependence for $\zeta + \zeta^2$ over \mathbb{Z}.

(3) Let A be a subring of B, with B integral over A. Prove that $B^\times \cap A = A^\times$.
 Show this is false in general without the integrality hypothesis.

(4) Let A be a subring of B, such that the set $B \setminus A$ is closed under multiplication.
 Show that A is integrally closed in B.

(5) Let A be a ring, let G be a finite group of automorphisms\(^1\) of A, and let
 $A^G = \{x \in A : \forall \sigma \in G, \sigma(x) = x\}$. Prove that A is integral over A^G. [Hint:
 if A is a field, this is a basic fact from Galois theory — how is it proved in
 that context?]

\(^1\)An automorphism of A is an isomorphism from A to itself. The set of all automorphisms forms a
 group under composition.