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Abstract. We discuss the discrete spectrum of the operator 

K 
HK(C) = [ - h 2 c 2 A  +m2c4] 1/2 -- E Zke2[ x -  Rkt-  1. 

k=l  

More specifically, we study 1) the behaviour of the eigenvalues when the 
internuclear distances contract, 2) the existence of a c-independent lower 
bound for Hi~(c)-mc z, 3) the nonrelativistic limit of the eigenvalues of 
HK(C)--mc 2. 

1. Introduction 

This paper deals with the operator 

K 
Hr =(_hZc2A +m2c4)a/z ~ Zke2[X_Rk [- 1 (1) 

k=l 

describing a relativistic charged particle with mass m in the presence of K fixed 
nuclei (Born-Oppenheimer approximation). The kinetic energy operator for the 
charged particle is obtained by straightforward "quantization" of the relativistic 
formula for the kinetic energy [p2c2-I-mZc4]l/z; (1) can be considered as an 
alternative to the Klein-Gordon equation for a relativistic model neglecting spin 
effects. In what follows we shall, with a slight abuse of terminology, use the name 
"electron" for the charged particle described by (1). 

For  the case K = 1 the above operator has been studied in detail by Herbst [1] 
and Weder [2]. One finds that 

H1 = (_  h2c2A + m2c,,)1/2 _ Ze2lxl- 

is bounded below if and only if the nuclear charge Z is less than a critical value Zcrit. 
This phenomenon is typical for relativistic atom models; the value for Z~rit in the 
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present case, Zcrlt=2c~-l/g [where e=e2 /hc~ (137 ) - l ] ,  lies between the 
corresponding critical values for the Dirac and Klein-Gordon theories (where 
Zerit=e -1 and c~-1/2, respectively). For Z<Zcri t  the discrete spectrum of H 1 
consists of infinitely many eigenvalues between 0 and mc 2, accumulating at mcZ; 
the remainder of the spectrum is purely absolutely continuous and consists of the 
half line [mc 2, oe). Moreover [1], the eigenvalues of H~ are separated from 0 by a 
gap increasing with Z-Zcr i t :  

o-ai~c(H1) C [(1 - Z2/Z2~it)l/2mc 2, mc2). (2) 

In the nonrelativistic limit, this gives a lower bound on the difference between the 
ground state energy Eo of H i and the rest energy mc2: 

Eo(H1) _ l, nc 2 > _ (Tc2/8)Z2e4mh- 2 + O(c - 2). (3) 

Up to terms of order c -2 this lower bound is independent of c; it has the same 
dependence on Z, e, m, and h as the ground state of the true hydrogenic a tom [the 
coefficient ~2/8 is larger than the true coefficient 1/2, but after all, (3) only gives a 
lower bound]. 

For arbitrary values of K, a first study of H~ was made in [33. As in the case 
K = 1, the operator HK is bounded below if and only i f Z  k__< Z~it = 2~- 1/zc, for all k. 
We shall always restrict ourselves to this case. Again one finds for Z k < Z~t ,  that 

K 

the essential spectrum of H~ is the half-line [mc 2, oe). If ~ Z k > Z~it , negative 
k = l  

eigenvalues occur [unlike the K = 1 case: see (2)], which may be made arbitrarily 
negative by bringing the nuclei close enough together. This "collapsing" tendency 
is, however, held in check by the electrostatic repulsion between the nuclei: it was 
proved in [3] that the total energy (including the electrostatic repulsion between 
the nuclei) for the ground state of the one electron K nucleus - system is positive: 

K 

Eo(HK) + ~ ZkZle2lRk-- Rll - 1 > O. (4) 
k, I= l 

k < l  

This means that the system is stable (see [3]). 
In the present paper we want to address three further questions concerning the 

spectrum of HK: 1) the behaviour of the energy levels when the internuclear 
distances IRk-- ez] tend to zero, 2) the existence of a lower bound analoguous to (2), 
for the case K 4 = 1, and 3) the non-relativistic limit of the eigenvalues of HK. 

When the electron mass is put equal to zero, rn=0, it is easy to see what 
K 

happens if the LRk--R~[ all shrink to zero. If Y. Zk>Zorit, one finds that hK(R) 
k = l  

=H~( rn=0 ;  R) has non-empty discrete spectrum (we use the notation R for the 
set {Rk}k=l ..... K)" Since hK(R) and 2hK(2R ) are unitarily equivalent, the eigen- 
values e,(R) of hr have the property 

eo(~..R) = 2 -  le,(R). (5) 

As 2 tends to zero, the eigenvalues of h~(2R) all tend to - oo. We prove in Sect. 2 
that a similar phenomenon takes place if the electron mass is different from zero: 
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Theorem 1. Let H K be defined as in (1), with 0 < Z ,  < Zerit  for all k. Suppose that 
r 

Zk> Zorit. Then VE<0, VN0eN:  320 such that 
k = l  

2 <)~o ~ ~: {En; En eigenvalue of H~(2R), E, < E} >= N O . 

A similar theorem for the Dirac operator with several Coulomb singularities, 
where E can be chosen arbitrarily in ] - rnc  2, mc2[, was proved by Klaus [4]. Our 
proof of the above theorem is inspired by the proofs given in [4]: the essential 
ingredients are the use of the Birman-Schwinger-kernel, and an argument using 
strong resolvent convergence. 

In Sect. 3 we prove a lower bound for Hx analogous to (2). The following 
simple argument already gives such a lower bound. For fixed Z1,. . . ,  ZK, there 

K 

exists a value Co of c such that ~ Zk < (2/n)hco/e 2. The same argument used by 
k = l  

Herbst in [1] to obtain (2) can then be applied in the present case, and we have 

(Ztot=~k Zk): 

C~>Co 0"aisc(HK) ( [ ( i -  2 2 1/2 2 2 =~ Ztot/Z¢rlt ) mc , mc ) (6) 

[where again Zo~it = (2/re) (e2 /hc)  13. This lower bound seems to be non-optimal 
from two points of view: 

1) It is only valid for large enough values of c; the lower limit Co depends on the 
choice for the Zk. It would be rather surprising if this were the best one can do. 

2) If the nuclei are widely enough separated, one would expect the electron to 
settle around the nucleus with the largest charge without "seeing" the other nuclei. 
This would be reflected by a dependence of the lower bound on 
Zm~=max{Zk ;  k =  1 . . . .  , K} rather than on Z,ot. Both these criticisms of (6) are 
avoided by the following theorem, proved in Sect. 3: 

Theorem 2. For any K, and any Z I  ... Z~ with 

6 < max Zk < (2/n)hc/e 2 = Zcrit, 
k 

we have 

K 

HK+ 
k,l=l k<l 

ZkZze2lRk-- Rtl- 1 >= mcZ[1 _ (max Zk)2/ZZ~r,] 1/2. (7) 

For  max Z k < 6 we prove a weaker result (see Sect. 3). The proof of(7) uses a lower 
k 

bound similar to but stronger than (4), which was also proved in [3]. Note that (7) 
contains the electrostatic repulsion between the nuclei: if the nuclei are far apart, 
this term becomes negligible, and (7) is a much better bound than (6); if the nuclei 
are very close however, the repulsion energy becomes rather large, and (6) may be 
better than (7). 

Finally, in Sect. 4, we study the nonrelativistic limit (i.e. c ~ )  of the 
eigenvalues of HK(c). The lower bounds (6) and (7) already imply a nonrelativistic 
lower bound for the ground state energy Eo(HK) - mc z, similar to (3). As we noted 
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above, these nonrelativistic lower bounds for the ground state energy are too 
small by a factor ~2/4 when compared with the expected limit. Moreover, these 
lower bounds cannot give us any information concerning the excited states. We 
prove in Sect. 4 that all the energy levels of HK tend to the corresponding 
bound state energy levels of the nonrelativistic Hamiltonian when c--+oo: 

Theorem 3. Define 

K 
H°  = -(hZ/2m) A - E Zke21x--Rkl- 1 (8) 

k=l  

Let E.(c), E ° respectively be the n th eigenvalues (counting multiplicity) of  ilK(c), H°r, 
where HK(C) is 9iven by (1). Then lira [ E . ( c ) - m c  2] = E  °. 

C - 4 0 0  

To prove this, we show that there exists a c-independent z in fl] such that the 
resolvent (HK(c) -- mc 2 -- z ) -  1 is norm continuous in c -  ~ around the nonrelativistic 
limit c -~ =0.  The proof uses the fact that (7) implies the existence of a 
c-independent lower bound for HK(c ) -  mc 2. 

2. The Behaviour of the Eigenvalues under Contractions 

For  this and the next section we shall use units such that h = c = 1. We can then 
rewrite/-/K as 

HK = (I, 2 + m2) '/2 - V . ( x ) ,  

where p2 = - A ,  and 

K K 
Vii(x)= 5", Zk(e2/hc)lX--Rk] 1 =(Z/n) E #k]X--Rk] -1 , (9) 

k=l  k=l  

with #k = Zk/Zcrit. K 
We consider the situation in which M -  Z #k > 1; as always we have #k < 1 for 

all k, hence # -  max # k  ~ 1. k = 1 

According to the Birman-Schwinger principle, we have, for E < 0, 

:~ {E.; E.  eigenvalue of HK, E. < E} 

= ~ {e.; e. eigenvalue of Vd/2r(p 2 + 17/2) 1/2 + tEl] - 1 gd/2, e. > 1 } .  

We shall therefore make a study of the spectrum of 

gn112[(P 2 + m2) I/2 + IEI]- 1 v lt2. 

We shall show that on the one hand 

%~(vd/2E(p ~ + m2) 1/2 + IEI] - '  vd/2) -- [0, #3 ,  ( lo)  

while on the other hand every point in [0, M] is an accumulation point of 

U a(V~/n2 [(P 2 + m2) t/2 + IEI] - 1  V~/2) 
n 
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(see below). Since M > 1 > #, this will imply that the number of eigenvalues greater 
than 1 of the operator V~/~2[(p 2 + m2) 1/2 + [El] - 1 V~/~ 2, / tends to infinity for n ~  00. 

We first compute the spectrum of Ix]- x/2[pl- llxl- 1/2, where IN] = ( -  A) 1/2. 

Lemma. a(lx[- 1/21p[- l txl- 1/2) = aa~(lxl- 1/2[pl- l lxl- 1/2) = [0, re/2]. 

Proof. Since lxl-i/21pT-11xV~/2>O, and lllpt-1/21xl-1/211=(~/2)l/2 (see [1]), we 
obviously have a(lxl-1/21pl-llxl-1/2)c [0, re/2]. We prove that this inclusion is an 
equality by explicit computation. On Lz(p,.3), the operator Ix[ 1/21p[-i Ix[- ~/2 has 
integral kernel 

(2rc2) - l lx l -  1/21x-yl-21Yt-l/2 

Defining the unitary operator U from L/ (N 3) to L2(N. x S 2) by 

(Uf) (t, co) = e3'/2f(e'co), 

one finds that on LZ(IR x S 2) the operator 

Ulxl- l/2lpl-llxl- 1]2U- 1 

is given by the integral kernel 

F(tl, t2; col, °)2)= ( 4rc2)- 1 [cosh(tl - t 2 ) - 6 0 1 "  (/3'2]- 1 

Since F depends only on the difference t 1 - t 2 ,  we see that by a Fourier 
transform }x[-1/2[pl-llx[ -1/2 is unitafily equivalent to the operator B on 
L2(p-~ x S 2) defined by 

(Bf) (k, co) = ~ dco'b(k; co, co') f (k, co') 

with 

b(k; co, 09 3 = l dteiktf(t, 0; co, 09 3 

= (2z)- 111 - (co. co3 2] - 1/2 sinh [k(rc - c o s -  t co. co')] 
sinhkzc 

where we choose cos-  1 co. c0'e [0, re]. 
Since the integral kernel b (k; co, co') depends only on co. co', B can be written as 

co l 

a direct sum l_@ ° ,,__@ t Bl~, where each Bzm acts on L2(]R) and is given by an integral 

kernel too: 
(Bz,,f) (k) = btm(k) f (k) , 

with 

b,m(k) = f dcox i dco2 Yl,~(col)Yzm(co2)b(k; o91, co2). 
S 2 $2 

One can check that each of these functions bl, . is continuous, tending to zero for 
k~oo .  This implies that [x[-1/e[p[-l[x]-l/2 has only absolutely continuous 
spectrum. Moreover one finds 

boo(0 ) = re/2, hence boo(R ) = [0, rc/2], which implies 

a(]x[-1/2[p[- l[x[-1/2)Da(Boo)=boo(~?~)=[O, rc/2]. [] 

In the following proposition we prove how this implies (10). 
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Proposition. Let VR be defined as in (9), with Rk + R t for k=t= I. Then 

~os~(vd/ZE(p 2 + m2) I/2 + IEI]-I V~/z)= ~o~(Vff/2(iPl + I) i V¢;Z) 

= (2/~)~ ~os,(Ixl- 1/21pl- l lxl-  l/z) = [0, ~] .  

Proof. For  B1, B2 bounded operators, we shall use the nota t ion  B1 = cB2 if B1 - B 2  
is compact. Choose a strictly positive 6 such that  26 < IRk -- R~I for all k + I. Define 
fk(X) = 1 if IX -- Rkl < 6, fk(X) = 0 otherwise. Define f =  E fk- Since (IPl + 1)- 1/2 V1/z is 
bounded,  we have (n-lim = norm limit) k 

(IPl + 1)- t V~/2 = n-lim e-"P~(Ipl + 1) -~ V~/z . 

Moreover  

e-"V~(lpl + 1)-1 V~/2 = n-lim e-"P~(Ipl + 1) - 1 I f (x)v~/2  + 171/2(1 - f ( x ) ) e -  ~ ]  

is a compact  operator  (as the norm limit of Hilbert-Schmidt operators), which 
implies that  ([Pl + 1)-1 Viii]2 is compact. Since 

IEI -  1 < (pZ + m2)i/2 + I E I -  (lpl + 1)__< IEI + m -  t ,  

we have therefore 

V~/z [(p 2 + m2) 1/2 + IEI] - 1V~1/2 = ~Vn~/2(Ipl + 1)-1V,m; 

this proves the first equality of the proposit ion (by Weyl's theorem). Since 
( 1 - f ) V ~ / z  is bounded,  we have also 

V~/2(lpl + 1)-1V~/2 = ffV~/Z(ipt + 1)---i v~/Zf . (11) 

It is easy to check that fV~/2 - Z  fk(x) (2#k/n)l/21 x -- Rk]- 1/2 is bounded.  Using the 
k 

fact that  [P[- 1 has integral kernel (2n2) - l l x - y [ - 2 ,  one sees moreover  that  

fklx - Rkl- l/2(Ipl + 1)- t[x - Rll- 1/2f/ 
is Hilbert-Schmidt for k 4:1. Hence 

fV~/2(lpl + 1) - lV~/2f=  c(2/rc) Z #kfklx -- Rkl- 1/2(tPl + 1)- 1Ix-- R~I- l/Zfk • (12) 
k 

Since the fk are the characteristic functions of disjoint balls, the sum in the right 
hand member  of (12) can be considered as a direct sum of unitarily equivalent 
operators (up to the coefficients Yk). Defining ,q(x) = t if lxl_-_/~, g(x) = 0 otherwise, 
we can therefore conclude from (11) and (12) that  aess(v~/e(lPl + 1)-IV~/a) is 
completely determined by 

o-(Olxl- 1/Z(lpl + 1)- 1Ix I - 1/20). 

Again, we have that  (1 -9 ) Ix l -1 /2  is bounded, while (IPl + 1 ) - l l x l - m  is compact,  
which implies 

Olxl- 1/2(IPt + 1)- l Ix I - 1/29 = clxt- 1/2(tpt + 1)- l Ix I - 1/2. 
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Hence  

oo~(glx l- l:Z(lpl + 1)- 1Ix I - 1/Zg) = oe~(Ixl- leZ(IPl + 1)- l lxl- m ) .  (13) 

One easily sees that  all the opera tors  txl- m(lPl +.~)-llxl- x/z, ,l >0 ,  are unitarily 
equivalent  under  dilations. This implies that  o(Ix[-1/2(lpl+R)-Xlx[-1/z ) is 
independent  of 2. On  the other  hand Ixl- m(IPl +.~)-  Xlxl- 1/= converges strongly to 
Ixl- X/ZlPl- ~lxl- 1/2 for 2 ~ 0 .  This implies that  every e ~ o(Ixl- x/21Pl- Xlx[- x/z) can be 
writ ten as e = lira e., with 

e. ~ a(Ixl x/Z(IPl + 1/n)- l lxl-  l/z). 

Combin ing  these two facts gives 

[0, re/2] = o(Ixl- 1/21Pl- l lxl- ~/z) C o(lxl-  m(IPl + 1)-  X tx I- x/z). 

Since also 

0 ~ [xl- x/2(lpl + 1)- l Ix I - 1/2 _< Ixl- X/Zlpl- X lxl- x/= < ~/2, 

we find o(Ixl- x/Z(lp[ + 1)- X lx I - x/2) = U0, rc/2], hence, by (13), and because 

0 < olxl-  1/2(Ip[ + 1)- x/21xl- x/2g__< re/2, 

o(glxt- a/Z(lpf + 1)- l lxt-  112g)  = [0, ZC/2]. 

Together  with ( t l ) a n d  (12)this implies ( . = m a x . k )  

%~(Vr~/2(lpl + 1)-x V~/2) = [ 0 , , ] .  [] 

With the help of this proposi t ion we can now prove Theorem 1. 

Proof of Theorem 1. We have (s-lira = strong limit) 

s-lira V~r/2 [(p= + m2) x/z + IEI] - 1 V~r/z 
2 ~ 0  

= (2M/r0 Ixl- ~/2[(p2 + m2)t/2 + IEI]- l lxl-  1/2 (14) 

opera tors  are bounded,  and gar~V~o(2M/~)lxl  -x a.e., where 

while 

G.s(v;~/2 E(p z + mZ) x/z + tell - x v~z)  = [0, , ] ,  

ae~s((2M/rc) [xt- 1/ZE(p2 + mS) lie + IEI] - l lxl- 1/=) = E0, M ] .  

Since # < 1 < M,  the strong convergence (14) implies that  every e ~ (1, M ]  can be 
written as e = lira e,,, with e. an eigenvalue larger than 1 of 

n--*- oo 

V1/,,Z[(P 2 + mZ) m + IEI] -x 171/2 
• II /n 
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(see Theorem VIII.24 in [5]). One easily sees that this implies 

lim # {e > 1 ; e eigenvalue of vl/2rr,,2, R/n LiP' "q- m 2 )  1/2 -I- ]Eli - 1 v1/2l• R/n J = ~ • 
n --~ o0 

By the Birman-Schwinger principle this implies (E < 0) 

lim # {e < E; e eigenvalue of (p2 _[_ m 2 ) 1 / 2  __ VRIn } = o 0 .  ( 1 5 )  
n--r oo 

Since (p2 +m2)1/2_ Vz R is unitarily equivalent with 

,~- 1 [(p2 + ;?m~) l /2  _ ~ ]  , 

the negative eigenvalues of (p2+m2)l/2-V~ decrease monotonically as 2~0. 
Together with (15) this proves the theorem. [] 

Remarks. 1. Using the continuity in 2 of the eigenvalues of (pZ + m 2) 1/2 _ V~ R (which 
follows from the unitary equivalence of this operator with 
2-1[(p2_]_ 22m2)a/2_ VR]), one can rewrite the conclusion of Theorem 1 as: 

V E < 0 ,  V2o: ~{J.<2o;E~7((pZwmZ)l/Z--vzll)}=oc). 

It is in this form that the analogous theorem for Dirac operators was stated in [4]. 
2. In order for the conclusion of Theorem 1 to hold, it is not really necessary 

that all the internuclear distances shrink to zero, nor that the shrinking is an 
orderly, simultaneous contraction. The argument of the proof also works in the 
following situation. Let S be any subset of {1, ..., K} such that S~ #k > 1. Define 

k~S 

ds = max {IRk-- Rt[; k, I e S}. 

Then, for any E < 0, 

# {e < E; e eigenvalue of (p2 + m2)1/2 _ VR} 

tends to 0o as d s tends to zero. 
3. If we put m=0 ,  we find that IpI-V;a and 2-1(tpI-V~t) are unitarily 

equivalent. The number of negative eigenvalues of Ipl-lZz~ is therefore 
independent of 2, which implies that Ip f -V  R has infinitely many negative 

K 
eigenvalues if Z #k> l .  

k = l  

3. A Lower Bound on HI¢ 

Following the same strategy as in [3], we shall first prove (7) in the case where all 
the Zk are equal, and then use a concavity argument to extend this result to 
arbitrary Zk. 

Proposition. Take 6 <_ Z <_ Zcrit = (2/n)~- 1. Then 
K K 

( P 2 ~ m 2 )  1 / 2 - Z ~  ~ .  IX--Rk] -1 ~-Z2o~ Z [Rk-R t [  -1 > m [ 1  - Z Z / Z 2 r i t ]  1/2 . (16) 
k = l  k,l= l 

k<l 
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Proof. The following inequality [stronger than (4)] was proved in [3]: 

lp l -  (2/re) I x - R d - l - 6  Iek-R~1-1 >0 .  
k , I= l  

k<l 

This implies 

( - ]Pl- W2 ZC~k~=l k,t=a 
k<l 

With the notation 

K K 
v(x) = Z~ N t x -  Rk[- 1 _ Z2~ 2 IRk-- R~[- 1, 

k = l  k , l = l  
k<I 

we have therefore 

Z > 6 =~ IPl -- uZvlPl- lie < Z / Z , i , .  

For  Z = Z~rit, (16) was already proved in [3]. We shall therefore assume Z < Z~rit. 
We now borrow an argument from [1] to prove (16). Fix 2 e [0, m), and define 

Ho = (/92 + m2) 1/2. Then 

B - ( g  o - 2)-  a/2v(Ho - 2)-  1/2 <= (Z/Zcri t ) / I  (Ho -- 2) 1/21p I1/z II z 

= (Z/Zeri t ) l ,  gl(m 2 __ ~2) - 1 / 2  

This implies that ~ - B  is invertible for 2 < r a i l - 7 2 / 7 2 ~  ,-¢rit,11/2, hence that 

(/4 o - v-- 2)-  ~ = (H o - 2)-  1/2('11 - -  B)-  ~(H o -- 2)-  1/2 

is a bounded operator. We have therefore proved that 

[o, m(1 - z ~ I z ~ J / ~ )  c d H o  - O.  

Since H o - v > O  by (4), this proves (16). [] 

By means of a concavity argument we can extend this to obtain the following 
result: 

Proposition. Fix Z, with 6 < Z_< Z~it. Choose Z 1 . . . . .  Z K such that 0 <= Z k < Z for all 
k. Then 

K 
(p2 -k m2)  1t2 - -  Y'~ Z k o ~ l x - - R k [ -  1 -k ~ Z k Z t C t [ R k - - R l l -  1 ~ m(1 - - Z 2 / Z 2 r i t ) l / 2 .  

k = l  k<l 
(17) 

Proof, We use the notation Z for the set {Z1 . . . .  , Z~:}. Define for all Z e [0, Z]  ~, 

G(Z)=infspec  (p2 +mZ)a/2-  --  Zk~lx--e~l l--m(1 /~e r i t /  3 k = l  

G(Z) is a jointly concave function in the Zk. According to (16) we have at every 
cornerpoint P of the cube [0, Z]  ~:, 

G(P)=> - E PkPNRk--R~I 1. 
k<l 
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By concavity it follows that (see Lemma 2.3 in [3]) 

G ( Z ) > - - ~ Z k Z l O ~ I R k - R t [  -1  foral l  Z ~ [ 0 ,  Z] K. [] 
k < l  

Theorem 2, as it was stated in the introduction, is essentially a reformulation of 
this last proposition: for given Z1 .. . .  ,Z~, with Zm,x=mkax Zk>6,  we choose 

Z=Zmax; the theorem then follows immediately. 
If Z~.,x < 6, one can always choose Z =  6, which gives for Z 1 . . . . .  Z K < 6: 

K 

(p2 + m2)~/2 _ Z Z k o ~ l x - R k l -  ~ + Z Z k Z N R k - -  R~I- ~ > m(1 -- 36/Z2rit) il2 .(18) 
k = l  k < l  

If all the Z k are chosen equal, Z k = Z ,  and the limit Z-~0 is taken, one expects that 
the ground state Eo(HK) approaches m" lim E o ( H r ) =  m, physically. This is not 

Z ~ 0  

reflected by the lower bound (18). Actually, we can do slightly better than (18). If we 
define G(Z) as above, we obviously have 

G ( O ) > m ( 1 - a ) ,  G(Qj)_->0, where a = ( 1 - 3 6 / Z Z r i t )  1/z 

(we assume Zk < 6, for all k), and where O, Qj are K-tuples defined as O = (0, ..., 0) 
(all entries zero), Qj = (0, ..., 0, 6, 0 .....  0) (all entries zero except thejth which equals 
6). By concavity this implies ( Z  k < 6) 

G ( Z ) > m ( 1 - a ) ( 1 - ~ Z k / 6  ) if ~ Z k < = 6  , 

hence 

G ( Z ) > -  k<t ~" ZkZ l ° : lRk - -R t [ -1  + m(l - a) max (1--  ~ Zk/6, 0 ) . 

For Z1 .. . . .  ZK<6,  this can be rewritten as: 

K 

(p2+m2) 1/2- Z ZkO~Ix--Rk[ - i  + Z ZkZ1O:IRk--Rz[ - i  
k = l  k < l  

> = m { 1 - m i n ( 1 , ~ Z k / 6 ) [ 1 - ( 1 - 3 6 / Z Z r i t ) l / 2 ] } .  (19) 

This lower bound has the advantage of tending to m when all the Z k are equal and 
tend to zero. However, we strongly suspect that (19) is not optimal; physically one 
would believe that Theorem 2 holds without restriction on maxZk. 

R e m a r k .  Note that (17) implies the existence of a c-independent lower bound for 
H K ( c ) -  mc z. Re-introducing c, we see from (17) that 

K 

( p 2 C 2  _}_ m2c 4) 1/2 __ mc 2 _ y~ Zke  2Ix _ Rkl - 1 
k = l  

> _ ~ ZgZle21Rk_R11 - i +mc2[(1 _ a 2 c - 2 ) 1 / 2  _ 1], (20) 
k < l  

with a = c max(6, {Zk})/Zcrit  = (e2rc/2h) max(6, {Zk} ). Expression (20) implies 

H K(c ) - -  mc 2 > -- Z ZkZleZJRk--  R l l -  1 _ ma 2 _ _ b(Z, R). (21) 
k < l  



Discrete Spectrum of One Electron Relativistic Molecules 533 

4. The Nonrelativistic Limit 

The naive way of obtaining the nonrelativistic limit of H ~ ( c ) - m c  2 would be to 
write 

(p2C2 _1_ t~2C 4) 1/2 - -  Fy/C 2 = p2/2 m + O(c- 2), (22) 

and to apply perturbation theory. This is actually what the Foldy-Wouthuysen 
approach [5] does for the more complicated Dirac case. One readily sees however 
that the next term in the development (22) is - -(p4/8m3)c-2, which is far too 
singular to be considered as a "perturbation" of the zeroth order term pZ/2m. The 
same problem occurs in the Foldy-Wouthuysen derivation of the nonrelativistic 
limit of the Dirac Hamiltonian. Recently Gesztesy, Grosse, and Thaller showed 
that the proper way of looking at the nonrelativistic limit ofa Dirac Hamiltonian is 
to study the resolvent. They showed that the Dirac resolvent is holomorphic in c - 1 
around its nonrelativistic limit c '-1 = 0  [7], and obtained powerful results 
concerning the analyticity of the eigenvalues in c 2, and an explicit formula, for the 
first order relativistic correction term to the nonrelativistic eigenvalues [8] 
(simpler than Foldy-Wouthuysen!). The same clue (i.e. studying the resolvent 
instead of the Hamiltonian itself) works in our present case. We have 

Proposition. Let HK(c), H ° be defined as in (1), (8) respectively. Then for all Z, R, 
one can f ind z ~ff2, Co, and k >=O such that C> Co ~ z is in the resolvent sets of  
HK(c)--mc 2 and H °, and 

II ( H  ° - z ) -  1 _ ( H ~ ( c ) -  m c  z - z)  111 ~ k c - l .  (23) 

Proof Define T o = pZ/2m, T(c) = (p2c2 + mZ c4) 1/2 -- mc 2, Vz(x) = • ZkeZlx -- Rgl- 1 
k 

Obviously V~z = 2Vz. Fix Z, R. Choose 2 > 1, and define c o = (TceZ/2h)2 max Z k. We 
have, using (21), k 

c >=eo => T(c ) - -2Vz= T(c)-- V~z-> - b(2Z, R). 

[The value ofc o was chosen so as to ensure that Vzz is still T(c)-formbounded.] Put 
b = 2 -  lb(2Z, R). Then 

(T(c) + 11)- 1/2(V z -  b) ( r (c )  + 11)- 1/2 < 2 -1 .  

This implies that 

- (r (c)  + 11) - 1/2(V- b) ( r (c)  + 11)- ~/2 is invertible (V= Vz), 

with II Ell - (T(c) + tl)- ~12(V- b) (T(c) + t )  t/z] -- ' II ~ ;4(;~- 1). 
Choose fl E N. large enough so that 

tI(V- b) ( r  ° + ~  + i t ) -  ~H -~ 2-1 , 

hence 

I I [ ~ - ( V - b ) ( T ° + 1 1  + i t )  ~]-~lJ _<2/(2- 1). 
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Pu t  now z = - (b + 1 + i f i) .  Then  

[H~c(c) -- m c  2 - -  Z ]  - 1 __ [ H  o __ z ]  - 

= [ H ~ ( e ) -  m c  2 - z ]  - 1 [ T  O _ T(c)]  [ U  ° - z] -1 

= [ T ( c ) - -  V+ b + 1 + i f i]  - 1 I T ( c ) - -  V+  1 + b] [T(c)  + 11] -- l / z  

• [11 - (T (c )  + 11)- 1/2(V- b) (T (e )  + 11)- 1/2] -1 

• (T(c )  + 11)- 1/2[T° - T(c)] (T O + 11)- l(W° + 11) (T O + 11 + i f l )-  

• [11 - ( V -  b) ( T  O + 11 + if i )-  i ]  -~ 

Hence  

We have  

II [HK(c) - m c  z - z ]  1 _ [ H  0 _  z ]  - 11[ 

<_- 22/( 2 -  1) 2 tl (T(c)  + 11)- 1/Z[T° - T(c)]  ( T  O + 1 ) -  1ll. 

ll(T(c) + 11)- 1 / 2 [ T ° -  T(c)]  ( T  O + 1l)- ill 

= sup3 ([(p2C2 -}- raZe4) 1/2 - - m c  2 -t- 13 - 1/2 

• D Z / 2 m  - (pZc2  + m % 4 )  1/2 + m c  2] [1 + p 2 / 2 m ]  - 1 } 

= sup {(1 + t ) -  1 /2 (12 /2mc2)  (1 + t + t 2 / 2 m c  2) - t} 

< sup { ( 1 1 / 2 / 2 m c  2) (1 + t / 2 m e  z ) -  i} N (8mc2) - 1 / z .  
t~R+ 

This proves  (23), with k = ( 8 m ) - 1 / 2 2 2 / ( 2 - 1 )  2 . []  

As a consequence of (23), the eigenvalues of ( H K ( c ) - -  m e  z -- z ) -  1 tend to the 
eigenvalues of  (H ° - z ) -  1 for c ~ 0% with a difference of  order  c -  1 (or less). Since 
the eigenvalues of  H cor respond  to the eigenvalnes of  the resolvent  ( H - z ) -  t, this 
implies tha t  the eigenvalues E , ( c )  - m c  z of H K ( c )  - -  m e  2 tend to the eigenvalues E ° 
of  H °, with again  l E , ( c )  - m c  2 - -  E ° ] ~ k n c  - 1 .  This  proves  T h e o r e m  3, fo rmula ted  in 
the introduct ion.  

R e m a r k .  I t  is clear tha t  our  es t imate  (21) is weak  when c o m p a r e d  with the results 
for the Di rac  ope ra to r  in [7, 8]. We have  little doub t  tha t  s t ronger  results also exist 
for our  present  ope ra to r  H K ( c ) .  I t  seems improbab l e  that  the resolvent  of  H K ( c )  

- -  m c  z would  still be ho lomorph ic  in e -  a, because of the presence of  the square  
root ,  but  it is possible tha t  the eigenvalues still are ho lomorphic .  We  have  
noth ing  to say abou t  this• 
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