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Abstract

We present a scheme for simple oversampled analog-to-digital conversion,
with single bit quantization and exponential error decay in the bit-rate. The
scheme is based on recording positions of zero-crossings of the input signal
added to a deterministic dither function. This information can be represented
in a manner which requires only logarithmic increase of the bit rate with the
oversampling factor, r. The input band-limited signal can be reconstructed
from this information locally, and with a mean squared error which is inversely
proportional to the square of the oversampling factor, MSE = O(1=r2). Con-
sequently, the mean squared error of this scheme exhibits exponential decay in
the bit-rate.

1 Introduction

Analog-to-digital (A/D) conversion involves discretization of an analog continuous-
time signal in both time and amplitude. In the simple analog-to-digital conversion
considered here, the time discretization is performed as regular sampling with an
interval � , and uniform scalar quantization with a step q is used for amplitude dis-
cretization. The accuracy of this conversion scheme depends both on the resolution
of the discretization in time and the resolution of the discretization in amplitude; it
is commonly studied using statistical analysis, and assuming linear reconstruction,
which amounts to low-pass �ltering of the sequence of quantized samples with cut-o�
frequency equal to the signal bandwidth. For most practical purposes the signals
involved can be assumed to be bandlimited; in the conversion these signals are sam-
pled above their Nyquist rate, so the time discretization is reversible. The amplitude
discretization, however, introduces an irreversible loss of information; the error made
in analog-to-digital conversion is therefore referred to as quantization error. In the
1940's, Bennett showed that the quantization error can be well modeled as a white
noise independent of the input, provided the quantization step is small enough, and
a su�ciently large number of quantization levels is available to ensure that the quan-
tizer does not overload [1]. According to the white noise model the mean squared
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error between a signal f and the corresponding signal fr, obtained with the linear
reconstruction, behaves as

E(jf(t)� fr(t)j2) = 1

12
q2
�

�N
(1)

where �N is the Nyquist sampling interval. This formula suggests that the conversion
accuracy can be improved beyond the precision of the quantizer by introducing over-
sampling; because of the costs involved in building high precision quantizers, modern
techniques for high accuracy analog-to-digital conversion are based on oversampling.
However, apart from its technological and economical justi�cation, using oversam-
pling to improve the conversion accuracy is considered to be dramatically inferior, in
rate-distortion sense, to re�ning quantization. For a given precision of the quantizer,
the bit-rate of oversampled A/D conversion, unless some entropy coding is used, is
inversely proportional to the sampling interval, R = O(1=� ); hence, the mean squared
error decays only inversely to the bit-rate, E(jf(t)�fr(t)j2) = O(1=R). On the other
hand, if the sampling interval remains �xed but the quantization step is re�ned, the
mean squared error decays exponentially in the bit-rate, E(jf(t)�fr(t)j2) = O(2�2R).

Only recently has it been demonstrated that the accuracy of oversampled A/D
conversion is better than suggested by formula (1), and that even without tedious
entropy coding the quantized samples can be e�ciently represented so that an expo-
nentially decaying rate-distortion characteristic can be attained [2, 3, 4]. The deter-
ministic analysis of oversampled A/D conversion in [2] and [3] reveals that increasing
oversampling provides more precise information about the locations of quantization
threshold crossings of the input analog signal and that this information describes the
signal with higher accuracy than indicated by formula (1). In particular, the deter-
ministic analysis shows that if the quantization threshold crossings of a signal f form
a sequence of stable sampling for the space of square integrable bandlimited signals
to which f belongs, and fr is a square integrable function, in that same bandlimited
space, for which the oversampled A/D conversion produces the same digital sequence
as for f , then the squared error between f and fr can be bounded as

jf(t)� fr(t)j2 < cf

�
�

�N

�2
; (2)

uniformly in time. Moreover, representing the information about the quantization
threshold crossings requires only a logarithmic increase of the bit-rate as the sam-
pling interval tends to zero [4]. Hence, using this quantization threshold crossings
based representation the rate-distortion characteristic of oversample A/D conversion
becomes

jf(t)� fr(t)j2 < afe
��R; (3)

where � is a positive constant, and af is proportional to the factor cf in (2) [4].
While these results provided a radically new perspective on oversampled A/D

conversion, some important issues remained unanswered. The � 2 conversion accu-
racy is established under the assumption that the quantization threshold crossings of
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the input signal constitute a sequence of stable sampling in an appropriate class of
bandlimited signals. Although there are bandlimited signals which have this prop-
erty, there also exist bandlimited signals for which the threshold crossings are too
sparse to ensure this conversion accuracy; giving a precise characterization of these
two classes of bandlimited signals is very intricate [3]. Another problem is that the
stronger error bound in (2) is not uniform on su�ciently general compact sets for
simple oversampled A/D conversion in its standard form. Note also that the result
about O(� ) accuracy with the linear reconstruction is valid only in a small range
of the discretization parameters q and � , and that the error does not tend to zero
along with the sampling interval but rather reaches a 
oor level for some �nite � [2].
So, there are basically no su�ciently general results about the accuracy of simple
oversampled analog-to-digital conversion. Moreover, no explicit algorithms for recon-
structing a bandlimited signal with � 2 accuracy are known, and the feasibility of local
reconstruction with this accuracy is not clear. This paper addresses and basically an-
swers all of these issues for a single-bit oversampled A/D conversion scheme with a
deterministic dither. The purpose of the dither functions is to enforce a su�ciently
dense sequence of quantization threshold crossings so that the O(� 2) accuracy and
exponential rate-distortion characteristic is guaranteed for all bandlimited functions
with amplitude bounded by a pre-set constant, and that uniformly on compact sets.
Moreover, we prove the existence of local reconstruction algorithms which lead to
good error and stability estimates. The details of the proposed 1-bit quantization
scheme are given in Section 2 below. In Section 3 we show how the quantized infor-
mation allows for stable reconstruction of a good approximation to the input signal,
and we provide error estimates. Section 4 gives a short preliminary discussion of
concrete reconstruction schemes.

2 A dithered A/D conversion scheme

In this section we study a simple single-bit analog-to-digital conversion with a deter-
ministic dither. We apply this conversion scheme to signals that belong to the set
C, that is the set of �-bandlimited signals with �nite energy and amplitude smaller
than 1, C = ff : f 2 V�; kfk1 � 1g. Here we use V� to denote the space of square
integrable �-bandlimited signals, V� = ff : f 2 L2(IR); f̂ (!) = 0 j!j > �g , and we
use f̂ to denote the Fourier transform of f .

The single-bit dithered A/D converter that we shall apply to f in C is de�ned by
means of a dither function d and a parameter � > 1. We shall assume that the dither
function satis�es some special conditions, ensuring that the composite signal f + d
changes sign frequently. In particular, we shall require that d is a C1-function that
satis�es moreover, for all n 2 ZZ,����d

�
n

�
+

1

2�

����� � 
 > 1 ; sgn
�
d
�
n

�
� 1

2�

��
= �sgn

�
d
�
n

�
+

1

2�

��
: (4)

An example of an appropriate dither is the sine function, d(t) = 
 sin(��t). Since the
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sequence j(f+d)(n=�+1=(2�))j, for n 2 ZZ, is bounded below by 
�1, and alternates
in sign, there must be at least one zero-crossing in every interval (n=��1=(2�); n=�+
1=(2�)). We can therefore select one zero-crossing tn in every interval; the resulting
sequence (tn)n2ZZ is su�ciently dense to form a sequence of stable sampling in V�.
This motivates the following de�nition:

De�nition 2.1 Let d be a bounded C1-function satisfying (4), and let � be a �xed
parameter satisfying � > 1. The single-bit dithered oversampled analog-to-digital
converter, Dd

�;� , is de�ned as the operator Dd
�;� : C ! `1(Z) given by

(Dd
�;�f)[n] = minfm : m 2 ZZ;m� 2 In; sgn[(f+d)(m� )] 6= sgn[(f+d)(m�+� )]g��n

where In = (n=� � 1=(2�); n=� + 1=(2�)), and �n = bn=�� c.
Remarks: 1. The output of the converter is a sequence of indices of sampling
intervals where zero-crossings of the dithered signal f + d occur; one zero-crossing
within each interval In. For simplicity, in the de�nition of the converter we choose
this to be the �rst zero-crossing in In, but any other selection algorithm would work
as well. Alternatively, we can de�ne the converter as the superposition Dd

�;� = C�S
d
�

where the operator Sd� : L2(IR) ! `2(ZZ) performs sampling and single-single bit
quantization of the dithered input signal, (Sd�f)[n] = sgn[(f + d)(n� )] , and the
operator C� performs selection and coding, which amounts to providing indices of
sign changes. We refer to Dd

�;� as a single-bit converter since the quantization involved
is single-bit quantization.
2. The conditions on d can be relaxed: in addition to the oscillation requirement (4),
it is su�cient to require that d is piecewise C1, i.e. that it is C1 in the open intervals
In, for all n in ZZ, and also that supn supt2In jd0(t)j = � <1.

The bit-rate, R, of this conversion scheme is determined by the number of sam-
pling intervals within each interval In, the size of which is 1=�. Here � will be kept
�xed, and � will typically be signi�cantly smaller than 1=�; the large rate limit cor-
responds to � ! 0. Thus the bit-rate needed for specifying the location of one data
change within In with precision � equals R = �j log(��)j.

It remains to discuss how much information about the signal f is contained in the
sequence Dd

�;�(f), and how accurately f can be reconstructed from this information.
For every interval In, the Dd

�;�(f) gives us the value of a sn;k = k� +n=�� 1=2� 2 In
(we assume, for simplicity, that � divides 1=�) such that (f + d)(sn;k) and (f +
d)(sn;k+1) have di�erent signs, implying that (f + d)(t) must be zero for some t 2
(sn;k; sn;k+1). Let us de�ne, tn := sn;k + �=2. Since jf 0(x)j � � for all x (this is a
consequence of kfk1 < 1 and the bandlimitedness of f), and jd0(x)j � kdkC1 =: �,
it follows that f(tn) = �d(tn) + �n, with j�nj � (� + �)�=2. The bit sequence
Dd

�;�(f) thus de�nes an e�ective sample sequence (tn)n2ZZ and tells us, within an
error proportional to � , the values of f at these sample points.

The sequence (tn)n2ZZ is uniformly discrete, i.e. infn;k2ZZ;n6=k jtn � tkj > 0, which
follows from j(f + d)(n=� + 1=(2�))j � 
 � 1 and j(f + d)0j � � + �. Moreover,
the lower uniform density of (tn)n2ZZ equals � > 1. Therefore, (tn)n2ZZ constitutes a
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sequence of stable sampling for all the spaces V�� for all � < � [5], and thus for V�
and C. Hence, any function f in C can be reconstructed from its samples (f(tn))n2ZZ.
As we saw above, however, we know these samples only within a certain error. To
make sure that these errors still allow for a stable reconstruction, we need an extra
stability analysis, which will be discussed in the next section.

3 Local reconstruction and stability

Not every sequence of stable sampling allows for reconstruction algorithms that are
still stable when the sample values are contaminated by errors. For instance, Shan-
non's classical sampling formula1

f(t) =
X
n

f(n)sinc(t� n) (5)

does not provide for a stable approximate reconstruction from perturbed samples.
Indeed, if each f(n) in (5) is replaced by f�n = f(n) + "n, with uniformly bounded
perturbation, j"nj � " for all n, then this can lead to divergences in some t, because the
series

P
n sinc(t�n) is not absolutely convergent. It is well known that this instability

can be overcome by oversampling. Indeed, if we know, for f 2 V�, the sample values�
f
�
n
�

��
n2ZZ, where � > 1, then we can write many reconstruction formulas other

than (5). For instance, if g is a function such that its Fourier transform ĝ is C1, and
satis�es jĝ(!)j = 0 for j!j > ��; ĝ(!) = 1p

2�
for j!j � �, and 0 < ĝ(!) < 1p

2�
for

� < j!j � ��, then we also have, for all f 2 V�,

f(t) =
1

�

X
n

f
�
n

�

�
g
�
t� n

�

�
: (6)

Because g decays faster than any inverse polynomial, the series in (6) is absolutely
convergent, so that convergence of (6) holds not only in L2, but also pointwise. More-
over, if the samples f(n

�
) in (6) are replaced by perturbed values f�n = f(n

�
)+"n, with

j"nj � " for all n, then the resulting sum approximates f within an error proportional
to ", uniformly in t:�����f(t)� 1

�

X
n

f�ng
�
t� n

�

������ � "

�

X
n

����g
�
t� n

�

����� � C" :

In this section we will show that similar stability properties can be proved for irregular
sampling at densities higher than the Nyquist density. To prove this, we �rst establish
the following lemma which is corollary of a theorem by S. Ja�ard [6].

Lemma 3.1 Suppose B : l2(ZZ) ! l2(ZZ) is a bounded operator, and suppose there
exist K1 > 0;K2 <1 such that, for all c 2 l2(ZZ),

K1kck2 � kBck2 � K2kck2 : (7)

1We use the notation sinc(t) = sin�t=�t.
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Suppose that, for some � > 0, the matrix elements Bm;n satisfy

jBm;nj � CN (1 + jm� �nj)�N ;

for all m;n 2 ZZ and all N � 1, with CN independent of m;n. Then the operator
B is invertible, and the matrix elements of its bounded inverse B�1 satisfy a dual
inequality, i.e. there exist C 0

N > 0 such that, for all m;n 2 ZZ and all N � 1,

j(B�1)n;mj � C 0
N(1 + j�n�mj)�N :

Proof: The condition (7) on B implies that both B and B�B are invertible; we
have B�1 = (B�B)�1B�. Now, for all m;n 2 ZZ and N > 1,

j(B�B)m;nj � C2
N

X
k

(1 + jk � �mj)�N (1 + jk � �nj)�N � C2
NC(1 + jm� nj)�N :

The inverse of B�B has the same decay o� the main diagonal as B�B [6], that is we
have that j[(B�B)�1]m;nj � C 00

N(1 + jm� nj)�N : It then follows that

j(B�1)n;mj � C 00
NCN

X
k

(1 + jn� kj)�N (1 + jm� �kj)�N � C 0
N (1 + j�n �mj)�N :

We now use this result to prove the following theorem:

Theorem 3.2 Suppose (tn)n2ZZ is a uniformly discrete sequence such that supnjtn �
n
�
j < 1, where � > 1. Then there exist functions  n 2 C1 and constants CN > 0

satisfying, for all t 2 IR, all n 2 ZZ and all N � 1,

j n(t)j � CN(1 + jtj)�N ;

such that, for all f 2 V�,
f(t) =

X
n

f(tn) n(t� tn) ;

where the convergence holds pointwise, absolutely and uniformly on compact sets,
as well as in L2. The functions  n depend on the particular sequence (tn)n2ZZ, but
the constants CN can be chosen so that they depend only on �, supn jtn � n

�
j and

infn6=k jtn � tkj.

Proof: 1. Our argument will use a specially constructed space Vg so that V� �
Vg � V��. To construct this space, we start by choosing a number � 2 (1; �), and a
monotonous C1 function � : IR ! [0; 1] such that �(x) = 0 for x < �1=2, �(x) = 1
for x > 1=2, and �(x) + �(1 � x) = 1 for all x. We then de�ne the function g by

ĝ(!) =
1q

�(1 + �)
sin

"
�

2
�

 
1 + � � 2j!j=�

2(� � 1)

!#
:
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One checks that ĝ(!) = 1=
q
�(1 + �) for j!j < �, ĝ(!) = 0 for j!j > ��, and

X
m

�����ĝ
 
! +

(� + 1)m

2

!�����
2

=
1

�(� + 1)
: (8)

From this construction and (8) it follows that functions gk(t) := g(t� 2k
�+1

) k 2 ZZ are
orthonormal. We shall denote by Vg the subspace of L2(IR) spanned by the (gk)k2ZZ.

2. A generic function ' in Vg can be written as ' =
P

k ckgk, where ck =< '; gk >,
so that

P
k jckj2 <1. The Fourier transform '̂ of ' can then be written as

'̂(!) =
X
k

cke
�i2k!=(�+1) ĝ(!) ;

i.e. '̂ is the product of ĝ with any �(�+1)-periodic function for which the restriction
to one period is square integrable. We can use this observation to show that V� � Vg.

If h 2 V�, then H(!) =
q
�(1 + �)

P
m ĥ(!+ �m(� +1)) is �(� + 1)-periodic, and its

restriction to [��
2 (�+1); �2 (�+1)] is a multiple of ĥ, and therefore square integrable.

Moreover, because H(!) = 0 for � < j!j < �� and ĝ(!) = 0 for j!j � ��, we
have ĝ(!)H(!) = ĥ(!); it follows that h 2 Vg, establishing V� � Vg. The inclusion
Vg � V�� follows immediately from support(ĝ) � [���; ��].
3. Due to the fast decay of g, the formula ' =

P
k < '; gk > gk converges not only in

L2, but also uniformly and absolutely pointwise. If we choose, in particular, to apply

this expansion to f 2 V� � Vg, then < f; gk >=
q

2
�+1

f
�

2k
�+1

�
and the expansion

reverts to a special case of (6).

4. We now proceed to derive reconstruction formulas for functions in Vg from their
samples at the tn. Since Vg � V�� and (tn)n2ZZ is a sequence of stable sampling for V��,
there existK1 > 0;K2 <1 so that, for all ' 2 Vg,K1k'k2 � P

n j'(tn)j2 � K2k'k2 :
If we write this in terms of the ck =< '; gk >, and introducing Bn;k = gk(tn), we
obtain

K1

X
k

jckj2 �
X
n

jX
k

Bn;kckj2 � K2

X
k

jckj2 : (9)

Because g decays faster than any inverse polynomial, and jtn � n
�
j � C < 1, there

exist CN > 0 so that for all k; n 2 ZZ and all N > 1,

jBn;kj =
�����g
 
tn � 2k

� + 1

!����� � CN

"
1 +

�����(� + 1)n

2�
� k

�����
#�N

:

It then follows from (9) and Lemma 3.1 that B is invertible and that the matrix
elements (B�1)k;n satisfy a similar inequality, i.e. for all k; n 2 ZZ and all N > 1,

j(B�1)k;nj � C 0
N

"
1 +

�����(� + 1)n

2�
� k

�����
#�N

;
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where C 0
N is independent of k; n. Since < '; gk >=

P
n(B

�1)k;n'(tn), we obtain that

'(t) =
X
k

< '; gk > g

 
t� 2k

� + 1

!
=
X
n

'(tn)

 X
k

(B�1)k;n g

 
t� 2k

� + 1

!!
;

where the sums converge absolutely.

5. De�ne now  n(t) =
P

k(B
�1)k;ng(t+ tn � 2k

�+1
). For all n 2 ZZ; t 2 IR, and N > 1

j n(t)j � C 0
NC

00
N

X
k

"
1 +

�����(� + 1)n

2�
� k

�����
#�N "

1 +

�����t+ n

�
� 2k

� + 1

�����
#�N

� C 000
N [1+jtj]�N :

On the other hand,
'(t) =

X
n

'(tn) n(t� tn) :

This holds for all ' 2 Vg; in particular, it holds for f 2 V�, which proves our claim.
The following stability result is an immediate corollary.

Corollary 3.3 Suppose that the sequence (tn)n2ZZ is uniformly discrete, and that
supn jtn� n

�
j � C <1, where � > 1. Let (�n)n2ZZ be a sequence such that there exists

a function f 2 V� for which jf(tn) � �nj � " for all n 2 ZZ. Then, for all t 2 IR,
jf(t)�Pn �n n(t� tn)j � "

P
n j n(t� tn)j � C 0", where the  n are the functions of

Theorem 3.2, and C 0 is independent of the particular sequence (tn)n2ZZ.

The following theorem statement summarizes what we have proved so far.

Theorem 3.4 Let d be a bounded C1-function satisfying (4) and jd0(t)j � � for all
t, and let � > 1. Let Dd

�� be the corresponding single-bit dithered oversampled A/D
converter, as de�ned in De�nition 3.1. Take f 2 C, and for every n 2 ZZ, de�ne

tn =
�
�n + (Dd

�;�f)[n] +
1

2

�
� ;

where �n = bn=�� c Then one can reconstruct an approximation ~f to f as

~f(t) = � X
n2ZZ

d(tn) n(t� tn) ;

where the  n are the functions associated with the sequence (tn)n2ZZ as in Theorem
3.2; the pointwise error is then bounded by

jf(t)� ~f(t)j � C(�+ �)
�

2
; (10)

where C does not depend on f or � .
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The distortion of this A/D conversion scheme, de�ned as the local average of error
power, can be bounded by

D =
1

T

Z
js�tj�T=2

jf(s)� ~f(s)j2ds � C2

4
(� + �)2� 2 ;

uniformly on C. Considering that the bit-rate of this scheme equals R = �j log(��)j
this leads to a rate-distortion characteristic of the form D � C2�
R.

In the next section we discuss some practical local reconstruction algorithms.

4 Reconstruction with �nite interpolation

As an illustration of other reconstruction algorithms, we give one example of a local
interpolation algorithm which gives accuracy similar to (10), up to j log(� )j factors.

Given an appropriate dither function with maximum amplitude 
 > 1 and C1

norm � := sup jd0(t)j, the tn must be separated by � := 2(
�1)
�+�

� � . For the sake of
de�niteness, let us assume � = 2. For each m 2 ZZ, one can compute an approxima-
tion to f(m2 ) by Lagrange interpolation of the f(tm+l) with jlj � L; we denote this
value by fapp;m;L. The Lagrange interpolation gapprox;K(x) based on the values values
g(x1); � � � ; g(xK) of a function g that is K times continuously di�erentiable, satis�es
the bound

jg(x)� gapprox;K(x)j � 1

K!
sup
y
jg(K)(y)j

KY
k=1

jt� tkj :

In our case jf (l)(t)j � �l, because f 2 V� and jf(t)j � 1. It follows that

����f
�
m

2

�
� fapp;m;L

���� � �2L+1

4(2L + 1)!

LY
l=1

 
l

2
+

1

4

!2

�
p
L
�
�

4

�2L+1
: (11)

This decreases exponentially as L increases. However, as explained earlier, we do our
reconstruction not from the exact f(tn), but from approximate values that are within
(� + �)�=2 of the true f(tn). We therefore also need to estimate the error between
fapp;m;L and ~fapp;m;L, which is the Lagrange interpolation of the approximate values
of f(tn). The explicit form of the Lagrange interpolation formula allows us to bound
this as

jfapp;m;L � ~fapp;m;Lj � �+ �

2
�

LX
l=�L

Y
k 6=l;k2f�L;Lg

jm=2 � tm+kj
jtm+l � tm+kj � C1

(� + �)�

2�
L2 :

(12)
In obtaining the �nal bound in (12) we used jm=2�tm+k j � (2jkj+1)=4, jtm+l�tm+kj �
� + (jk � lj � 1)=2, and jtm+l � tm+l+l0 jjtm+l � tm+l�l0 j � (� + jl0j � 1)jl0j. The factor
C1 is about 90, and its value would change if we chose another �. Combining the two
estimates, we �nd

����f
�
m

2

�
� ~fapp;m;L

���� �
p
L
�
�

4

�2L+1
+ C1

(� + �)�L2

2�
;
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optimizing over L leads to

����f
�
m

2

�
� ~fapp;m;L

���� � C2� (log � )
(2+�) :

We have thus a reconstruction of the regular samples f(m=2) with precision propor-
tional to � , up to logarithmic factors in � . From these regularly spaced samples,
the whole function f can be reconstructed using standard techniques. Several steps
in this bounding estimate are very coarse, and it can no doubt be improved by a
more careful analysis. This example is given only to show that one can achieve near
optimality very easily, with local and fast algorithms.

More practical local algorithms may well involve trigonometric polynomial inter-
polation rather than Lagrange interpolation. It should also be noted that departing
from \standard" frames, and introducing weight factors for the di�erent samples, de-
pending on their local density [7], would probably lead to better error bounds. In
this more adaptive framework, all the zero crossings of f +d could be used, instead of
only one per interval In, as in De�nition 2.1. But all this is work for future research.
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