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WAVELETS ON THE INTERVAL

Ingrid Daubechies
ATET Beall Laboratories
Murray Ill, NJ 07974
USA

This paper is based on joint work with A. Cohen and P. Vial.¥

The construction of orthonormal wavelet bases or of pairs of dual, biorthogonal wavelet
bases for L*(R} is now well understood. For the constrection of .u-.;ﬂ__un._u..iw_ bases of com-
pactly supported wavslets for L¥*(R), in particular, one starts with a trigonometric polyno-
mial mg(£) = L, cne™ ™, satisfying mo(0) = 1 and |mo(£} + [molé + 7)|* = 1, as well
as some mild technical conditions. The corresponding scaling function ¢ and wavelet « are
defined by (¢} = (2m)~M? T, mo(273¢) and $H(£) = <7 mg(E/Z + =) $(£/2). The
functions t;.(z) = 27932 ._..E..M.th.u —~ kY, 7,k € E, then constitute an orthonormal basis for
.....__HHHH.. For fiwed § € £, the ¢,.(z) = 279% #(2~3x — &k} are an orthonorimal basis for a
subspace Vi C L*(R); the spaccs Vj comstitute a multiresolution analysis, meaning in par-
ticular that ... C WV Cc W C Vo C V., C Vg C ..y with (yea Vi = {0}, Uz Vs = L7(®)
and Projy,_, f = Projy, [+ Teez {f, iz} ¥ia. (See Mallat¥ (19239), Meyerd (1990) -or
Daubechies® (1988,1992) for more details.) Smoothness for + implies that mg has to have &
zero at 7 of sufficiently high multiplicity. More precisely, .

d*

%Sﬂu =0 £=0, ..., k.

Em w

%mﬁraﬂu”—._..\.‘muﬁm%ﬁﬁwﬁa F=10, . _,k+—

This in turn implies that mo has at least 2k non-zero coclficients,

By far the oldest example of such an orthonormal basis of compacily supported wavelets
is the Haar basis, with mg(é) = {1 + ¢%). Other examples, with arbitrarily high smooth- -
ness, were constructed in Daubechies? (1988). They correspond to g of the type mo(£} =
HEH..M“_: Qn(£), where Qu(£) is a polynomial of order & — 1 in e™%. The resulting ¢ and
have support width 2V — 1; their degree of smoothness increases linearly with N.

These smoother wavelets provide not only orthonormal bases for L*(R}, but also incondi-
tional bases ._,.._n.m function spaces consisting of more regular functions. In particular  Meyer”!
{19%0)}, i#f ¥ & O (%), then the for, k € T and ¢4, 7 € M, & € Z, provide an uncomndi-
tional basis for the function spaces C*(R), for all 5 < r. The reason why wavelel bases (unlike
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Fourier series) can provide unconditional bases for £™-spaces ia essentially that the wavelets ¥
have vanishing moments. Imposing such vanishing moments is equivalent Lo requiring that any
pelynomial of degree less than or equal to ¥ — 1 can be written as a linear combination of the
Pz —n).

Extcept for the Haar basis, the basic Eﬁimp in an orthonormal basis of compactly supported
wavelets cannot have a symmetry or antisymmetry axis, Symmetry can be recovered, with-
out giving up the compact support, if the orthogonality requirement is relaxed. In that case
one builds two different _:u_.:— related) multiresclution hierarchies of spaces, ... W Vic W o
VicVeco ...and ... Th Cc ¥ WWoVicVaec ..., corresponding to two scaling func-
tions g E..__.._ @ and twe wavelets ¢ and ¥. They are defined by means of two ..-m.mn:Eﬁ_mﬁl_n.
polynomials mg u._._.“_. g, wwnﬁm_:ﬁh mg(£) E.n.”ﬁ + malf + w) “_._-‘HI._.,E“ 1; we have then
#(£) = (2) 1/ E mo(27€), $(€) = (@)% [] o(2€), €)= e~/ Mal£/2 + =) $(£/2),

Fr=1
n__w_ () = e~ ﬂﬂﬁ.mwm + ) .u_ (£/2). Under some extra technical conditions the v ; and the o,
constitute daal Riesz bases for LX(R), fe. { yj0 Pyur) = 88 For proofs and examples,
see Cohen, Daubechies and Feauveau’ (1992). There sxizi two possibilities leading to saym-

metry for @, 1 if o, site have an even number of nn...mm,.mnmms.h_ then &(x} is symmetric, and
is wbnh.uu,:d-:..nwnmﬁ around = = 1/2; if myg and Ry have an odd number of coefficients, then ¢
and 3 are both symmetric, ¢{z) around z = 0, ¥(z) around = = 1/2. Smoothness for these
“biorthogonal” wavelet bases again reguires vanishing moments; we have now

..wm__nuhn!u”v.ﬁkmﬁﬁuﬂ.;ﬂuﬂa £=10,. &E%mnﬁ: =0 £=0,...,%k.

All the above concerns bases for £°(R). In many applications, however, one is interested in
problems confined to an interval -.wnrn.ﬂ than the whole line. Examples are numerical analysis
(with boundary conditions at the edges of the interval), or image analvsis (where the domain
of interest is the cartesian product of twe intervals). Let us assume that the interval is [0, 1].

It is very easy to restrict the Haar basis for L&) o a basis for L3([0, _.:m starting from the
collection {dos; k € Z} U {thes § m-F.w € Z}, which is an orthonormal basis for LR}, it
suffices 1o take the restrictions of these functions to [0, 1]. Things are not so trivial when one
starts from smoother wavelet bases on the line. Assume that both ¢ and ¢ have support widih
2N — 1. In order to aveid having to deal with the two edges of [0,1] ai the same time, we
can choose to start from the basis { doioks ke ZYU{ e 7S —jo, &k € 2} for L¥{R), where
=1 = N so that none of the functions has support straddling both 0 and 1. Even so there
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will be 2NV — 2 wavelets, at every resolution level and at every end of [0, 1], that straddle an
endpoint, so that their support is meither completely in [0, 1] nor completely in BY J0, 1{. Tt is
- not a priori clear how to adapt them in such 3 way that ihe result is an orthonormal basis of
LE([0, 1]).

Several solutions have been proposed for this problem. They all correspond to different
choices of how to adapt the multiresolution hierarchy to the interval {0, 1].

1. Esxtending by zeros.

This solution consists in not doing anything at all. A function f supported on [0,1] can
always be extended to the whole line by putting f(z)} = 0 for = & [0, 1). This function can then
be analyzed w.__._____. means of the wavelets on the whole real line. There are two things wrong with
this naive approach. First of all, this kind of extension typically intreduces & discontinnity in f
at r = 0 or 1, which will be reflected by *large” wavelet coeflicients for w.ﬂn sceles {i.e. wavelot
cocfficients which do not decay very fast) near the two edges, even if f itsel! is very amooth on
[0,1]. The second *bad™ aspect is that this approach uses “too” many wavelets. At acale —j,
one finds {f, @ ;&) #£ 0 for typically af 4 an — 1 wavelets; intuitively one should have to use
only % wavelets, at scale —j, when looking at proeblems on [0, 1].

- 2. Periodizing.

In this case one expands a function f on [0,1] into "periodized™ wavelets defined by
PP x) = 272 Ty P2z + 24 — k), with j 2 jo = 0 (for j =< 0, the ¥*3, vanish iden-
tically), 0 < & < 2/ — 1. These wavelets have to be supplemented by lowest resolution scaling
_.=H._nmnr=m P i defined analogously; the result is an orthonormal basis of L¥{[0, I]), associated
with a multiresolution analysis in which VE" is spanned by the e One now has exactly &

wavelets at scale —j, as well as 27 scaling functions ¢©7, in every VI7". Sinece

[ az 5tz) wigpt) = [ e _M et ..i voasle)

expanding a function on [J, 1] into _-.m-.mmn:uﬂ__ wavelets is equivalent to extending the eriginal
function into a periodic function with period 1 and analyzing this extension with the standard
whole-line wavelets. Unless f was already periodic, this construction introdueces again a discon-
tinuity at & = 0, £ = 1, which will show up 2s slow decay in the fine scale wavelet coefficients
pertaining to the edgea. Again, it will be impossible to charvacterize the one-sided regularity of
f at 0 or 1 by locking at the decay of the | {f, @5 | for 5+ — oo, unless f Is periodic.
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3. Reflecting at the edges.

In this case, one extends the function f on [0,1] by mirroring it at 0 and 1; beyond —1 and
2 we mirror once more, and so on. The full extension is then defined by flz) = f(Zn — =z} i
Ip—1<z<2n flz) = flz —2n) if 2n < = < 2n + 1. H the original funection on [0,1] is
continuous, then this extension will be continuous. Typically, however, the derivative of the
extension has discontimmities at the integers. Expanding the “reflacted” extenszion of a function
on [0,1] in a whole-line-basis of wavelets is equivalent to expanding the original function on
[0,1] with n.....u.ﬂ.__unu o P____u_mﬂ__.._: wavelets P4 defined on [0,1] by

i) =30 duale - 20 + 3 wse(2€ - 2) .
Sl feR

Starting from an crthonormal wavelet basis, this folding typically does not lead to an orthenor-
mal wavelet basis on [0, ). 1f ¥, .,_mh.w are two biorthogonal wavelet bases, with ¢ and & both
symmeiric or antisymmetric around 172, then their ﬁb_..“_m& versions turn out to be still biorthog-
enal on [0, 1) however, The resulting biorthogonal multiresolution analysis hierarchies on [0, 1]
have 27 + 1 (symmetric case} or 27 (antisymmetric case) scaling functions and ¥ wavelets at
resolution level 7. Becausc the “reflected” extension typically has a discontinuous derivative,
we can again nol expect to characterize arbitrary regularity of f by means of the wavelet coef-
ficients; decay of the {f, 1%} can characterize up to Lipschitz regularity (2 gain over ihe two
previeus “solutions™), but not more, although one can do a little better by using two different
pairs of biorthegonal bases. Explicitly, one finds, if the "original® _?i..urn._ﬂu“__ P are in O7
with r > 1, that a function f on {0, 1] is in €*{[0,1]), with 0 < s < 1, if and only if
sup M.u_._._.__,:___nu.uq ..__wl.u.?,v_ = an

i=e
B el =1

(For s = 1 a similar cesult holds, with ' replaced by a Zygmund-type space.] As usuoal,

the “only if” part follows from fj dz %4 (z) = [, dz ¥_ji(z) = 0, the “if" part from the
smoothness of . If one tries to see Er..ﬁ. goes wrong if 8 > 1, say 1 < s < 2, then the "only if”
part would require [ dxz Hﬁl.._b = 0, the T part & € O7 with r > 5. The first Tequirement is
equivalent with 7, dx {1 — |z])d{z —£) = 0 for all £ € E, which is only possible if ¢ is the tent
function ¢{z) = 1— |z| if [z] € I, #{z) = 0 otherwise. But then ¢ ", and the 5if” part fails.
One can however characterize [ € O, 1 < & < 2 if one uses two pairs of biorthegonal wavelet
bases, one for the “if™ part, one for the “only if” part. Values of 5 > 2 cannot be attained. For
more details, see Cohen, Daubechies and Vial!l (1992). | .
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4, The construction of Y. Meyer.

A fourth solution was proposed in Meyer™ (1992), The starting point of this construction is
any one of the compactly supported bases in Daubechies! (1988), with N vanishing moments,
and support th = support ¢ = [—-N + 1 N]. __H_..n basiz on [0, 1] constructed by Y. Meyer is
. derived from a multiresolution analysis that “hives” on [0,1]. At uﬂ_ﬂnmnzz.ﬂ fine scales; the
approximation spaces VI3 consist of 2 — 2N 4 2 “interior® fuactions, 2N - 2 “left edge”
functions, and 2V — 2 “right edge” functions. The complement spaces ._.______.m..w___ are generated by

27 — 2N — 2 “interior” wavelets, N — 1 “left edge™ wavelets, and N — 1 “right edge” wavelets.
| The total number of wavelets at scale 7 is thus 27, but the total number of scaling functions
is larger, 2/ + 2N — 2. The “interior™ functions are simply those ;4 or ¢_;4 (as they were
defined on the whole line) which happen to have their support contained in [0, 1). The “edge”™
functions have to be constructed explicitly. In particular, the left edge funclions ¢*F, are
obtained by orthonormalizing the (2N — 2} restrictions ¢_; 4|y where & is chosen so that
0 € interior support{¢_;.). The right edge scaling functions are cbtained similarly; the edge
wavelels can then be computed from projections of those ¥_j i), which straddle 0 or 1 and for
which more than half the suppoct is within [0, 1. ._ﬂ...._,..i details, see Meyer™ (1992).) The result
of the construction is an orthonormal family of wavelets in [0, 1], with N vanishing moments,
and the same regularity as the original ¥; topether with an orthonormal family of scaling
functions on [0, 1] at the coarsest scale under consideration, these .E“_Eun.m..._ wavelets constitute an
orthonormal basis for L2([0,1]). In addition, their regularity and vanishing moment. properties
engure that they sre inconditional wavelel bases for the Hélder spaces €[, 1]) for all & < r,
where r is the regularity of the original wavelet basis, ¢ € Cf. Becavse the number of scaling
functions at resolufion j 15 larger than the number of wavelets, Meyer's construction cannot
be ﬁmuﬁﬂmmﬁ_ to wavelei packeis on the interval: in a2 wavelet ._m__mﬁ__ﬁi construction, wavelet
coefficients get split as well as scaling coefficients, using the same filters, and for this it is
essential that the two families have the same number of coefficients at every scale. That the
number of scaling functions is not a power of 2 is also a nuwisance for practical applications
such as image analysis, where arrays are typically squares with 256=256 or 512x512 pixels. In
order to implement the scheme, all the orthonormalization and projection matrices have to be
computed explicitly. This involves the computation of integrals of the type .

hs&ia+sin+a with —N +1<kécN.
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Uszing the refinement equation for 4, these can be computed by solving an
(N — 1)(2N ~ 3) dimensional linear system. This system is however very badly conditioned,
because eg. 57 dz [¢(z — WV + 2 >0 [T de |d{z 4+ N — 1P

The disequilibrium among the °dir {¢{z + k){* also expresses itself in other ways. One
application of wavelet bases and multiresolution on the interval is the “natural” extension
of functions living on the interval to funclions on the whole line. Sinée the edge-wavelets
and scaling functions can all be written as linear combinations of restrictions of whole-line
functions, one can extend them trivially by “gluing en their tails back again™, i.e. by replacing
every d_jtliny by ¢-;c. If this is done for every edge term in the expansion of a fanction fon
[0, o0}, the result is a smooth function ™ exiending f Lo R, with the appealing property that
high frequency companents in f spread out less to (—oo, 0] than low frequency components. At
any scale j, the extension is limited to [—2-2(2V —2), oc). This doesn't work so well in practice, .
however: the extension of those edge scaling functions that are obtained from restricting ¢_,
te [0, __ which have only a tiny piece of their support in [0, 1] can have a huge amplitude outside
[0.1]. This is the reason why B. Jawerth, in an application invelving such extension operators
for surface design in collaboration with B. Dahlberg, decided to develop a construction different.
from Meyer's. Another instance where one can feel the imbalance among the #0315 1o the plots
of Lthe edge functions. Typically, ¢o - W ljpe=y has much faster high amplitude osciflations than
¢ itself {the same ascillations are of course present in the tail of &, but with exceedingly small
amplitude); because of the orthonormalization procedure, this oseillatory behavior spreads to
several edge scaling functions. Figure 1 shows the edge scaling functions for N = 4, at the lefi
side of the interval [0, 1]; it ilustrates this cseillatory behavior.

5. A different construction of interval wavelets.

This paper presents a fifth sclution, also derived from compactly supported wevelet bases for
E. Like Meyer's construction, it uses “interior” and “edge® scaling funetions af every resolution.
We introduce fewer edge functions however, tailoring them so that the tolal number is exactly
2% at resolution j; mereover, as in Meyer’s case, all the polynomials on [0,1] of degree =< N —1
can be written as linear combinations of the scaling functions at any fixed scale. It then
follows that all the corresponding wavelats, at Lthe edpe as well as in the interior, have &
vanishing moments, and this is sufficient to ensure that we have again inconditional bases for
the C*([0, 1})-spaces, with s < r if 9 € C". After completing our work, we learned that a similar
censiruction was made independently by P. G, Lemasié-Rieusset® [1092), and by B. Jawerth,
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Figure 1: The adapted scaling functions in ﬂlﬂ.z at the left edge in the construction of Y. Meyer
for W = 4.

A related constructien, from the filter point of view, is in Herley, Kovagevié, Ramchandran and
Vetterli'™ (1992). .

Our starting point is again the N vanishing moment family of Daubechies* {1988) or a
variant (see Daubechies™® (1900, 1992)). We choose to translate them so that support ¢ =
aupport ¥ = [-N + L, N]. Our goal is to retain the interior sealing funetions, and to add
adapted edge scaling functions in such a way that their union still generates all polynomials
em [0, 1), up to a certain degree. Let us illustrate the principle of the constroction by working
on the half line _...F oo) instead of on [0, 1}; we then only have to deal with the left edge, and
it doesn't matter at which scale we work. The “interior” scaling functions at scale 0 are
the $op with B > N — 1; they are supported on [0,c0). By themsslves, the interior dus
do not even generate the constants on [0,00), as is clear from ¢ye(0) = &(—&) = 0 for all
E > N — 1. Let us therefore add the constants “by hand”, We define an edge function % by
#(z) =1 552 m_y ¢(x — k). The interior ¢gu i and this edge function ¢" together generate all
the corstants on [0, oo). Moreover, because 702 @f{x — &) =1, we also have, for 0 < = < oo,
$(z) = TE 2 dlz — &) = Tt o{x — k), showing that ¢* has compact support. It also
shows, incidentally, that ¢9 is orthogonal to all the interior gox. The only thing that we have
to check is thai by adding functions in this ad hoc way we don’t leave the framework of a
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multiresolution bierarchy. We have however

M

Mo —K)=vZ 3. hea $(25—0)

f=2k_ N1

& = P+ 3 sem—0[1-v2 3 E-L

I=N-1 demm M

A (A =1)s2]

= =)+ > iEliT& > F;_ _

=M -1 P T |

where we have used that A, = 0 forn < =N 4+ lorn > N and 7 ke, = ,Iu.mﬂm:#ET It
follows therefore that

Vot = Bpan{d%, doxs £ = M —1} < Span {¢°(2], dawi k= N 1] = VIT';

sitnilar inclusions hold immediately if we scale by other integer powers of 2, and we still have
a hierarchy of nested spaces.

This is essentially u:; there is to the construction we propose here. I we wani the edpge
+ interior scaling functions to generate more polynomials than only the constants, then we
have to add in,by hand, more edge functions {for the polynomials up to degree L, we add in
total L + 1 functions). If we work on the interval, then the same has .h_. be done at the other
edge as well. On the other hand, as pointed out earlier, for many applications it is desirable
to have exactly 2¥ scaling functions of scale j when .%E._.“.Em on [0,1]. Let us count how much
roorm this leaves us for adding extra functions at the edges. If we start from a minimal support
N-vanishing moment wavelet, then support ¢ = [N + 1, V|, and for § sufficientiy large we
have exactly 2 — 2 4 2 interior mntmﬂm functions at scale . This leaves room for adding VW —1
ad hoee functions at each edge, so that the total family can generate polynomials of degree at
most &N — 2. The unaltered whole-line scaling functions can generate all polynomials up to
degree IV — 1, so that we seem to have “lost” one degree. In order to recover this one extra
degree (and so be able to characterize the C*(|0, 1]} spaces for Lthe same range of 5 as we could
on all of ®), we have Lo make room for one extra function at each edge of the interval. For this
reason we abandon the two outermest interior scaling functions, which corresponds to ..ﬂ_u.m.mmnm
only the goy with k > N rather than k& > N — 1 on the half line. More precisely, we define the
N edge functions ¢%, k=10, ...,N =1, on [0, oc) by |

- e .
=)= 3 ﬁ.__wu e 4+n—N41). (1)
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These are all compactly supported, and their supports m.n.n staggered, i.e. support ¢* =
[0,2N — 1 — k]; they are independent, and orthegonal to the dom, m = N. Together with
the dom, ™ = N, they generate all the polynomials up o degree N — 1 on [0, 00), Finally,
there mnmmn constants age, bim {which can be computed explicitly) so that

| aN-zm .

) =3 ane F@)+ 3y bam H2z —m) . (2)

wrma
{For all proofs, see Cohen, Daubechies and Vial¥ (1992).)

One can obtain an orthonormal basis for V*® by orthonormalizing the ¢, since they are
already orthogonal to the orthonormal g, scaling them leads to an orthonormal basis for
every _.___.u_h..u. If one orthonormalizes by a Gramm-Schmidt procedure, starting with =1 and
working down to lower values of k, then the resulting orthonormal g™, & =0, ..., N — 1,
still have staggered supports: support &F = [0, N + k. To carry out the Gramm-Schmidt
orthonormalization explicitly, we need again the overlap matriz {¢*, #%}. To compute this

overlap matrix, we use the recurrence (2). For & = {0, for instance, we have

R 1. T 1
13 = cdo TN+ > B
e
from which we obtain [|#°||%. I then follows that
an—a
(8, 8) = Goa aro TIEI + top @ra HF, B+ 1S b b

-._._.l.?_.

leading to an explicit formula for (&%, &%), sinee ||#%)|* is known. One proceeds similarly for
higher values of k.

: .“.—.._“_.m. orthonormal ¢f*, constructed with staggered supporis along the lines indicated above,
salisly a recursion ﬂmrmﬁwnn simifar to (2) and inherited by all the scales ;. Explicitly, there
exist constanta HpEl and AY® (which can be computed explicitly from the ag,, by in (2) and
the orthonormalization uEﬂn_mE.nw. such that

4Tk

A, = H m Pt et 3L RER & it - (3]

m=iN

AH this was on the half line. If we work on the interval [0, 1], and we start with a scale fine
enough so that the two edges don’t interact, ie. 29 > 2V then there are 2f — 2N interior scaling
functions ¢_jn, ..., d_ja-n-y, and we add N functions at each end, following the principles
outlined above. Together, these 2 orthonormal functions span ﬂqﬁ._._.

—
.~
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We now turn to the wavelets rather than the scaling functions. As usual, we define .E__,m..w: =
viY A V™. From dimension counting, it immediately follows that dim WP = 25,
the other hand it is easy to check that the 2/ — 24 functions Y jmym=MN, .. e N_1 are
all in _.ﬁ__..__M.E. Simce they are all orthonormal, we therefore need to add an extra 2N wavclets [V
at each cdge) to provide an orthonormal basis for ..____‘.H.;H. How should they be constructed? To
simplify notation, we return to the half line [0, o). We define there Wil — VTN (VAL the
Wi, 7 = ¥ all belong to Eu-nn, and we are looking for ¥V extra Tunctions in Wi, orthonormal
to these 49, Define N -

P - S, dan @
=0
Then the ¢* are N mdependent functions in Wi, orthogonal te the Po,me 7 = V. Because of
the recursion relation (3}, the * can be written as o linear eombination of gty and gy .

- e AN -3
¥ m M_ﬁh ...m_u...__.. + M D Pt (5}
o

m=N
Int a final step, these % can be orthonormalized and we end up with an erthonermal family ylelt,
k=0,...,N—1. His possible to orthonermalize in such .m_. way that the ¥*" have staggered
supports, support ¥ = [0, ¥ + E]. For any J € £ we define again W (x) = 2402 e (27x);
.nn.m_mﬁ_un.. with the ¢ ;... m > N, the Wl k=0, .. N1 provide an erthonormal basis for
Wk moreover, there exists constants % and gy so that

M4k

N1 .
Sx = D GEE R 3 g e | (6)
L] = -
This completes our explicit construction, at least at a left end. The same has to be repeated
at a right end. Combining the two leads to orthonormal bases for v___‘.H..:.

The result is an orthonormal basie for L3([0, 1J). If e, 24 € 7, this is also an unconditional
basis for C*([0, 1]} for s < +. In particular, a bounded function § is in C#{[0,1]) if and only if

W Bidl 1 s 1, 9788 ) < gomdterir |

where C is independent of J or m, k.,

. Figure 2 plots the scaling functions for IV = 4_ at the Jeft end of {0, ca). Note that, like on the
whole line, we have no explicit analytic expression for the wavelets and scaling funetions on the
mterval: for practical w_u_u.:nwm_uam. all that is really needed are Lhe Rlter coefficients; in addition
to the hn, go = (=1)™hawgy—m, We now also have the fig:_, mlel  ghenr g . from (3) and
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{6) {+ same at right). Tables for these filter cocflicients can be found in Cohen, Daubechies
and Vialll (1992). The adapted sczling funciions in these plots are less oscillatory than those
(in §4. On [0,1] the V¥ functions gt k=0, .. ,N 1, are pure polynomials (of degree N —1).

_U_.

G Z < & o < <% &
Figure 2: The adapted sealing functions in .w.__.:?.ﬂ? at the left edge in our new construction for
N = 4. .

This is because all the scaling functions together on [0, 00) gemerate the polynomials up te

degree N —1; since the interior scaling functions $om, m = N, only start kicking in from x = 1
onward, the NV adapted scaling functions have to be polynomials themselves.

€. Discussion of the new construction.

Many variations are pessible. One can, for instance, start from completely different families
of whole-line wavelets, and adapt the number of additional edge scaling functions to their
support width and number vanishing moments.

We have assumed that we want the scaling functions to gencrate all possible polynomials up
to a certain degree. If the interval wavelets are E.m__“_ to solve a differential equation, then it may
he uaeful Lo adapt the construction so that all the scaling functions and wavelets involved satisfy
certain prescribed boundary conditions. P. Auscher'?! (1992) adapted the original construction

by Y. Meyer in this way; his scheme carries over entirely to the present construction {with more
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numerical stability). The construction by P. G. Lemarié-Ricusset, which is essentially the same
as ours, obtained independently, was carried out in view of this mm,ﬁ:.h.wﬂﬁ.b.

The same 1deas apply of course to Tmnm.n_-n.m__uu.w_ wavelet bases. If one starts from a choice
with {anti)symmetric wavelets and scaling functions, then the adapted scaling functions and
wavelets at the Emu..& edge can be chosen to be the mirrors of their left edge equivalents. Since
biorthogonality instead of orthonormality is wanted, there is more freedom in the choice of the

edge functions, and cne can optimize for extra criteria,

‘There is an important differenee between wavelets on the line and wavelets on [, 1], which
results in the necessity, in at least sorne applications, to precondition ihe data [e.g. an im-
age}) prior to their wavelel decomposition. Scaling functions on all of & have the property
Fdz ¢_;u(x) = 27772 independently of k. A consequence of this is that the corresponding low
pags filler preserves the sequence ... 1111 ... . For the specially adapted scaling functions at
the edge of [0,1], we typically have [ d= ﬁuﬂﬂﬁnu_. #£ 2742 The result is that the sequence
mmvariant under low pass filtering 15 not 111...111, but rather a sequence consisting of only
1-5 m the middle, but with different initial and final entries. Something similar happens for
sequences corresponding to higher degree polynomials. In practical examples (e.g. w—.:m.ﬂmnmw__ one
still would like simple palynomial sequences ke 1 11 1...o0r 1 23 4... to lead to a zero
high-pass component, bowever. This can still be achieved if we perform a prefiltering on the
data. The details of this scheme can be found in Cohen, Daubechies and Viaill {1092).

A

(&) {b) {e)

Figure 3: Different time frequency tilings.

Apart from the obvious applications mentioned above (image analysis, solving _“__.Lm.\.ns.n. with
boundary conditions on an mterval or 2 box), consiructions of wavelets on the interval can also
be used for e.g. monuniform tilings of the time frequency plane. This is illustrated in Fig. 3:
Fig. Ja shows the standard wavelet tiling; Fig. 3b the tiling resulting from another wavelet
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.w.m_nw_n.n basis; the tiling in Fig. 3c is obtained by choosing different wavelet packet bases on
consecutive intervals. A straightforward application of wavelet packets derived from the con-
struction in §5 leads to abrupt cut-offs between the intervals; in order to obtain sinocther transi-
tions one has Lo develop taper-off techniques that let the different intervals “inter-penetrate”™ to
some extent (preferably the penetration should be proportional to the support of the different
wavelet packets), This last is work in progress. Another possible application of wavelets on the
. interval Lies in the extension operators mentioned above (where every d;ifjon gets extended
to its natural extension @_;:); such extensions could be used e.g. to avoid boundary problems
in continuous wavelet transforms of data confined to a finite interval.
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