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lar point sets in one and two dimensions. We discuss current results on both the
practical and theoretical sides. In particular, we focus on subdivision schemes and
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1. Introduction

Wavelets are a versatile tool for representing general functions and datasets, and
they enjoy widespread use in areas as diverse as signal processing, image compres-
sion, finite-element methods and statistical analysis (among many others). In essence
we may think of wavelets as building blocks with which to represent data and func-
tions. The particular appeal of wavelets derives from their representational and com-
putational efficiency : most datasets exhibit correlation both in time (space) and
frequency, as well as other types of structure. These can be modelled with high accu-
racy through sparse combinations of wavelets. Wavelet representations can also be
computed fast, because they can be built using multiresolution analysis and subdiv-
ision.

Traditionally, wavelet functions ψj,m are defined as translates and dilates of one
particular function, the mother wavelet ψ. We refer to these as first-generation
wavelets. This paper is concerned with a more general setting in which wavelets need
not—and, in fact, cannot—be translates and dilates of one or a few templates. Gen-
eralizations of this type were called second-generation wavelets in Sweldens (1997);
they make it possible to reap the benefit of wavelet algorithms in settings with
irregularly spaced samples, or on 2-manifolds which cannot be globally parametrized
to the plane. In generalizing wavelet analysis to these more general settings one
would like to preserve many of the properties enjoyed by first-generation wavelets.
In particular, they should still be associated with fast algorithms and have appro-
priate smoothness and localization properties. In addition, they should be able to
characterize various functional spaces of interest. In this paper we shall be mostly
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Figure 1. Subdivision is used to generate a smooth curve starting from a coarse description.

concerned with fast algorithms, localization and smoothness; we will not address
function-space characterizations. Note though that the smoothness of the wavelets
is related to their ability to form unconditional bases for certain function spaces
(Dahmen 1996; Donoho 1992).

The key to generalizing wavelet constructions to these non-traditional settings is
the use of generalized subdivision schemes. The first-generation setting is already
connected with subdivision schemes, but they become even more important in the
construction of second-generation wavelets. Subdivision schemes provide fast algo-
rithms, create a natural multiresolution structure and yield the underlying scaling
functions and wavelets we seek.

Subdivision is a technique originally intended for building smooth functions start-
ing from a coarse description. In this setting there is no need for irregular grids, as
one is free to choose the finer grid to be regular. However, we intend to use subdivi-
sion as part of an entire multiresolution analysis which starts from a finest irregular
grid. This finest grid is gradually ‘coarsified’; subdivision then gives an approxima-
tion of the original data by extrapolating the reduced data on the coarser grid back
to the original finest grid. In such a setting the geometry of the grids is fixed by the
finest irregular grid and the coarsification procedure; thus subdivision on irregular
grids is called for.

Remark 1.1. Another approach would be to resample the original finest level
data on a regular grid and use first-generation wavelets. Resampling, however, can be
costly, introduce artefacts and is generally impossible in the surface setting. Therefore
we choose to work on the original grid.

(a) One-dimensional subdivision

The main idea behind subdivision is the iteration of upsampling and local averag-
ing to build functions and intricate geometrical shapes. Originally, such schemes were
studied in computer-aided geometric design in the context of corner cutting (de Rham
1956; Chaikin 1974) and the construction of piecewise polynomial curves, e.g. the de
Casteljau algorithm for Bernstein–Bézier curves (de Casteljau 1959) and algorithms
for the iterative generation of splines (Lane & Riesenfield 1980; De Boor 1978). Later
subdivision was studied independently of spline functions (Dyn et al. 1987; Dubuc
1986; Deslauriers & Dubuc 1987; Cavaretta et al. 1991; Cavaretta & Micchelli 1987,
1989) and the connection to wavelets was made (Mallat 1989; Daubechies 1988).

For example, figure 1 demonstrates the application of the four-point scheme. New
points are defined as local averages of two old points to the left and two old points
to the right with weights 1

16(−1, 9, 9,−1).
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Figure 2. Regular, semiregular and irregular grid hierarchies in one dimension.

In the case of spline functions, smoothness follows from simple algebraic conditions
on the polynomial segments at the knots. However, in the general setting convergence
and smoothness of the limit function are harder to prove. Various approaches have
been explored to find the Hölder exponent of the limit function, or to determine its
Sobolev class. Early references in this context are Dubuc (1986), Dyn et al. (1987,
1990b), Deslauriers & Dubuc (1987), Micchelli & Prautzsch (1987), Daubechies &
Lagarias (1991), Cavaretta et al. (1991), Rioul (1992), Villemoes (1994) and Eirola
(1992). These studies and their results all rely on regular, i.e. equispaced, grids.
The analysis uses tools such as the Fourier transform, spectral analysis and the
commutation formula.

In this paper we focus on irregular point sets. To describe the settings we are
interested in, we distinguish three types of refinement grids: regular, semiregular
and irregular (see figure 2). A regular grid has equidistant points on each level,
and, each time a new point is inserted, it is placed exactly between two old points.
For example, the curve shown in figure 1 is parametrized over a regular grid. A
semiregular grid (middle, figure 2) starts with an irregular coarse grid and adds
new points at parameter locations midway between successive old points. Thus the
finer grids are locally regular except around the original coarsest level points. In
irregular grids (right) parameter locations of new points need not be midway between
successive old points. Note that regular grids are translation and dilation invariant,
while semiregular grids are locally dilation invariant around coarsest level vertices
and irregular grids generally possess no invariance property.

Similarly the weights used in subdivision schemes come in three categories: uni-
form, semi-uniform and non-uniform. Uniform schemes like the four-point scheme of
figure 1 correspond to first-generation wavelets and use the same subdivision weights
within a level and across all levels; they are typically used on regular grids or grids
which can be smoothly remapped to a regular grid. Semi-uniform schemes are used
on semiregular grids; they vary the weights within each level (special weights are used
in the neighbourhood of the coarsest level points), but the same weights are used
across levels. Such schemes are sometimes referred to as stationary. Wavelets and
subdivision schemes on an interval also fall in this category. Non-uniform schemes
use varying weights within and across levels and correspond to the second-generation
setting.

Almost all work on smoothness for non-regular grids concerns the semiregular
grids with semi-uniform subdivision schemes. Because translation-invariance is lost,
Fourier-transform-based arguments can no longer be used. However, since the same
weights are used on successive levels, one has dilation invariance around coarsest level
points and can reduce the smoothness analysis to the study of spectral properties
of certain fixed matrices. In Warren (1995, unpublished research†) it is shown that
the semi-uniform version of the four-point scheme on a semiregular grid yields a C1

limit function.

† Available from www.cs.rice.edu/˜jwarren.
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Figure 3. An example why non-uniform subdivision is needed. The limit function with uniform
(left), non-uniform (right) subdivision. The same irregular grid is used in both figures.

Figure 4. Two-dimensional loop subdivision is used to generate smooth surfaces
from a coarse description.

In the irregular case the subdivision scheme must become non-uniform to account
for the irregularity of the associated parameter locations. This is illustrated in fig-
ure 3, which shows the limit functions of the uniform four-point rule (left) and
non-uniform four-point rule (Sweldens & Schröder 1996) (right); both use the same
irregular grid.

The study of irregular subdivision is not only theoretically interesting, but also
of great importance in practical applications. For example, in the semiregular set-
ting, one can use adapted weights to better control the shape of a curve (Kobbelt &
Schröder 1997) or surface (Zorin et al. 1996). More importantly, in many practical
set-ups we start with samples associated to a very fine, but irregular, grid. Now the
main task for subdivision is not further refinement, but rather aid in a multiresolu-
tion analysis on coarser grids. The wavelet and scaling functions from the coarsest
level are generated with a subdivision scheme with new points which are no longer
parametric midpoints, but are dictated by the finest level grid on which the data
were originally sampled. Even though the actual number of levels is always finite
for any concrete application of these methods, the asymptotic behaviour of irregular
subdivision is still relevant as the finest and coarsest level could be arbitrarily far
apart.

In these settings smoothness results become much harder to obtain. Because the
subdivision weights vary within a level, the Fourier transform can no longer be used,
and because they vary across levels, even spectral analysis cannot help. In this paper
we discuss some tools that can be used to analyse smoothness; in particular, we
demonstrate that the commutation formula still holds and becomes a critical tool
for smoothness analysis.

Phil. Trans. R. Soc. Lond. A (1999)
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Figure 5. Sections of regular, semiregular and irregular triangle grids in two dimensions.

(b) Two-dimensional subdivision

The two-dimensional setting appears in the context of generating smooth surfaces
(see figure 4). Here regular grids are too restrictive. For example, tensor product set-
tings are only applicable for surfaces homeomorphic to a plane, cylinder or torus due
to the Euler characteristic. Historically, this challenge was addressed by generalizing
traditional spline patch methods to the semiregular biquadratic (Doo & Sabin 1978),
bicubic (Catmull & Clark 1978) and quartic-box-spline settings (Loop 1987). Similar
to the one-dimensional setting, researchers also developed interpolating construc-
tions (Dyn et al. 1990a; Zorin et al. 1996; Kobbelt 1996). All these settings (and
others since; for an overview see Schröder & Zorin (1998)) proceed by applying
quadrisection to an initial mesh consisting of either quadrilaterals or triangles and
thus belong to the semiregular setting. The weights used in the subdivision scheme
are semi-uniform since they take into account the local neighbourhood structure of a
vertex, i.e. how many edge neighbours a given vertex has. As in the one-dimensional
semiregular setting, spectral analysis is the key to understanding the smoothness of
these constructions. We refer to Reif (1995), Warren (unpublished research), Zorin
(1996) and Schweitzer (1996) for more details.

The irregular setting appears in two dimensions just as in the one-dimensional case
when some finest irregular level is presented on input and the main task is to build
a multiresolution analysis on coarser levels. In this case, however, we can no longer
define downsampling as simply retaining every other sample. This brings us to the
realm of mesh simplification; we postpone the discussion of mesh simplification and
the construction of appropriate non-uniform subdivision operators to § 3.

(c) Overview

This paper summarizes the results obtained in Daubechies et al. (1998, b), Guskov
(1998) and Guskov et al. (1999). We start with the one-dimensional results of Dau-
bechies et al. (1998, b). We show that even simple subdivision rules, such as cubic
Lagrange interpolation, can lead to very intricate subdivision operators. To control
these operators, we use commutation: because the subdivision scheme maps the space
of cubic polynomial sequences to itself, we can define derived subdivision schemes for
the divided difference sequences. These simpler schemes can then be used to prove
growth bounds on divided differences of some order, corresponding to smoothness
results for the limit function of the original scheme. The commutation formula enables
us to control smoothness and is the key to the construction of wavelets associated
with the subdivision scheme.

In Guskov (1998), inspiration from the one-dimensional analysis is used to tackle
the much more complex two-dimensional case. Again, differences and divided dif-
ferences are introduced, which can be computed from level to level with their own

Phil. Trans. R. Soc. Lond. A (1999)
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derived subdivision scheme. Control on the growth of these divided differences then
leads to smoothness results. In practice, finding the right ansatz for irregular sub-
division in the two-dimensional setting is much harder than in the already difficult
one-dimensional case. Finally, we show how irregular subdivision schemes can be
used in multiresolution pyramids for two-dimensional meshes embedded in R

3 and
review several applications from Guskov et al. (1999). The ‘wavelets’ associated with
these schemes are overcomplete and are related to frames rather than bases.

2. The one-dimensional case

(a) Multilevel grids

Consider grids Xj , which are strictly increasing sequences of points {xj,k ∈ R |
k ∈ Z}, and which are consecutive binary refinements of the initial grid X0, i.e.
Xj ⊂ Xj+1 and xj+1,2k = xj,k for all j and k. Thus in every refinement step we
insert one odd indexed point xj+1,2k+1 between each adjacent pair of ‘even’ points
xj,k = xj+1,2k and xj,k+1 = xj+1,2k+2, as in figure 2. We define dj,k := xj,k+1 − xj,k.
We shall also use the term grid size on level j, for the quantity dj := supk dj,k. As
j → ∞ we want the grids to become dense, with ‘no holes left’; this translates to the
requirement that the dj be summable.

Remark 2.1.

(1) The above multilevel grids are called two-nested. One can also consider more
general irregular grids such as q-nested grids, where we insert q− 1 new points
in between old points or even non-nested but ‘threadable’ grids. See Daubechies
et al. (1998) for more details on this.

(2) In case the ratio between the lengths of any two neighbouring intervals is
globally bounded, we call the grid homogeneous. An example of an irregular
two-nested grid that is not homogeneous is built by xj+1,2k+1 = βxj,k + (1 −
β)xj,k+1, where β is a fixed parameter satisfying 0 < β < 1. This is an example
of a dyadically balanced grid: the ratio between the lengths of two ‘sibling’
intervals dj,2l and dj,2l+1 is bounded. However, the ratio between dj,−1 = βj

and dj,0 = (1 − β)j is unbounded.

(b) Subdivision schemes

Subdivision starts with a set of initial function values f0 = {f0,k}, which live on
the coarsest grid X0. The subdivision scheme S is a sequence of linear operators
Sj , j � 0, which iteratively computes values fj = {fj,k} on the finer grids via the
formula fj+1 = Sjfj , or

fj+1,l =
∑

k

Sj,l,kfj,k.

We consider only local schemes in the sense that the above summation has a globally
bounded number of terms centred around k = 2l. Subdivision gives us values defined
on the grid points xj,k. By connecting these points we can define a piecewise linear
function fj(x) (see figure 6). Our ambition is to synthesize a continuous limit function
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Figure 6. On the left an interpolating scheme is applied to function values; the new function
values are shown as open circles. On the right, arrows show the dependencies in the computation
of those values; the vertical dashed arrows indicate that function values which were already
assigned are kept unchanged in the subdivision, because this is an interpolating scheme.

φ(x) as the pointwise limit for j → ∞ of fj(x). We are interested in the existence
and smoothness of φ(x).

The subdivision coefficients Sj,k,l will depend on the application one has in mind.
We pointed out in the introduction that one cannot simply stick with the coefficients
from the regular case; typically the coefficients need to be spatially varying, and will
be linked to the spatial variation of the grid.

One such subdivision scheme which allows for a spatial interpretation is Lagrangian
interpolating subdivision (Dubuc 1986; Dyn et al. 1987; Deslauriers & Dubuc 1987,
1989). Here, the value fj+1,2k+1 at a new point is found by defining a polynomial
which interpolates the points (xj,l, fj,l) for l in the neighbourhood of k, and eval-
uating this polynomial at xj+1,2k+1 (see figure 7). In the regular cubic case, this
corresponds to the standard four-point scheme, with

Sj,2k+1,k = Sj,2k+1,k+1 = 9
16 and Sj,2k+1,k−1 = Sj,2k+1,k+2 = − 1

16 .

In the irregular setting the coefficients are a non-trivial quotient of cubic polynomials
in the xj,k (see Daubechies et al. 1999).

Lagrangian subdivision is interpolating in the sense that in each subdivision step
the values at the even grid points are kept, i.e. fj+1,2k = fj,k, and the limiting
function thus interpolates the original data φ(x0,k) = f0,k. For non-interpolating or
approximating schemes, the fj+1,2k can differ from fj,k (see figure 8).

(c) Smoothness results

To derive smoothness estimates, we use Lemarié’s commutation formula idea, gen-
eralized to the present irregular setting. (Note that this is similar to Rioul (1992) and
Dyn et al. (1991), who studied the regular case.) For the cubic Lagrange interpolation
example, this amounts to introducing divided difference sequences,

f
[1]
j,k :=

fj,k+1 − fj,k

xj,k+1 − xj,k
,

Phil. Trans. R. Soc. Lond. A (1999)
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fj + 1,2k + 1
P(x)

xj,k – 1            xj,k xj,k + 1     xj,k + 2

xj + 1,2k + 1

Figure 7. Cubic Lagrangian interpolation. The value fj+1,2k+1 at the odd grid point xj+1,2k+1 is
obtained by evaluating a cubic polynomial P (x) interpolating values at four neighbouring even
grid points xj+1,2k−2 = xj,k−1, . . . , xj+1,2k+4 = xj,k+2.

1
–1/169/169/16–1/16

1/83/4
1/2

1/8
1/2

Figure 8. The top row shows the limit function and weights of the cubic Lagrange interpolation
scheme; the bottom row illustrates the non-interpolating subdivision scheme producing cubic
B-splines.

and observing that the f
[1]
j,k are also related by local subdivision, i.e. there exists a

local subdivision scheme with entries S[1]
j,l,k so that

f
[1]
j+1,l =

∑

k

S
[1]
j,l,kf

[1]
j,k.

The existence of the S
[1]
j follows from the fact that every S

[0]
j := Sj maps a con-

stant sequence to itself (see Daubechies et al. 1999). (It is clear that if S[0] does not
leave constants invariant, then S[1] cannot exist, since it would need to map the zero
sequence to a non-zero result.) Moreover, one can show that if the f

[1]
j ‘converge’ to

a continuous function φ1, then the f
[0]
j := fj also converge, to a continuously differ-

entiable function φ, and that φ′ = φ1. (For details, see Daubechies et al. (1998, b).)
This is the essence of the commutation idea:

fj
divided difference−−−−−−−−−−−−→ f

[1]
j�limit
�limit

φ
differentiation−−−−−−−−−→ φ1 = φ′

.
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It turns out that one can also consider higher-order divided differences; for the
cubic Lagrange interpolation case, one can go up to fourth-order differences because
S

[0]
j maps cubic polynomials sampled at xj,k to cubic polynomials sampled at xj+1,k.

These f
[4]
j,k no longer converge, but we can control their growth, and this helps us

prove that φ1 is continuous, and φ continuously differentiable. In fact, detailed (and
rather technical) estimates in Daubechies et al. (1999) show that, for homogeneous
grids,

|f [4]
j,k| � C

λj

d3
j,k

,

where λ < 1 is determined by the bound on the ratio between neighbouring interval
lengths. Once such a bound is known, a general theorem (see theorem 4 in Daubechies
et al. (1999)) can be used to prove that φ ∈ C2−ε. This result is optimal in the sense
that even in the regular case better smoothness cannot be obtained.

Remark 2.2.

(1) This result for cubic Lagrange interpolation on homogeneous grids can be
extended to grids that are dyadically balanced only. The analysis becomes
much more delicate.

(2) A similar approach can be used for non-interpolating subdivision. In that case
it turns out that one has to use appropriately defined divided differences, which
are different from the ‘standard’ definition. See Daubechies et al. (1998) for a
complete discussion of this situation.

(d) Wavelets

Wavelets at level j are typically used, in the regular case, as building blocks to
represent any function in the multiresolution analysis that ‘lives’ in the (j + 1)st
approximation space Vj+1, but not in the coarser resolution approximation space
Vj ⊂ Vj+1. One can introduce similar wavelets in the present irregular setting. The
scaling functions φj,k are the limit functions obtained from starting the subdivision
scheme at level j, from the ‘initial’ data fj,l = δl,k, and refining from there on. Under
appropriate assumptions on the subdivision operators Sj , the φj,k are independent;
Vj is the function space spanned by them. Clearly, Vj ⊂ Vj+1. As in the regular case,
there are many different reasonable choices for complement spaces Wj (which will
be spanned by the wavelets at level j) that satisfy Vj+1 = Vj ⊕ Wj .

When the scaling functions are interpolating as in the Lagrangian case, i.e.

φj,k(xj,k′) = δk,k′ ,

then a simple choice for a wavelet is given by ψj,m = φj+1,2m+1, i.e. the wavelet is
simply a finer-scale scaling function at an odd location. This is sometimes called an
interpolating wavelet. This is in general not a very good wavelet as it does not have
any vanishing moments. It can be turned into a wavelet with vanishing moments
using the lifting scheme (Sweldens & Schröder 1996).

Another way to select a complement space Wj is to use commutation between two
biorthogonal multiresolution hierarchies, Vj and Ṽj . If both are associated to local

Phil. Trans. R. Soc. Lond. A (1999)
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subdivision schemes, then the biorthogonality of the φj,k and φ̃j,l imposes consis-
tency requirements on the Sj and S̃j . Commutation can be used, as in the regular
case, to pass from one dual pair of multiresolution analyses to another, by operations
related to differentiating and integrating, respectively. For instance, the above choice
of an interpolating wavelet corresponds formally to letting the dual scaling function
be a Dirac. Applying the commutation rule each time reduces the order of the scal-
ing functions, but increases the order of the dual scaling function. In particular, the
Dirac will become a box and later on a general B-spline. It turns out that there is a
natural definition of wavelets ψj,k and ψ̃j,k corresponding to the dual multiresolution
structures. It is shown in Daubechies et al. (1998) that, as in the regular case, the
new wavelet after commutation is the derivative of the old wavelet and the new dual
wavelet is the integral of the old dual wavelet. By repeatedly applying commutation
starting from the Lagrangian setting, one can thus build the entire family of biorthog-
onal compactly supported irregular B-spline wavelets and their duals (Daubechies et
al. 1998).

3. The two-dimensional case

We mentioned in the introduction that the importance of the irregular setting arises
from the practical need to coarsify in settings in which the initial input is given as a
function over a fine triangulation of the plane (functional setting) or as a triangula-
tion of a 2-manifold (surface setting). In the one-dimensional setting, the downsam-
pling operation to create a coarser level is straightforward as we can simply ‘skip’
every other sample. In the irregular two-dimensional setting, downsampling is much
less straightforward. Before delving into the details of irregular two-dimensional sub-
division, we first discuss a number of approaches which can be employed to define
irregular downsampling in the surface setting. This problem has received a lot of
attention in computer graphics, where it is generally referred to as polygonal simpli-
fication.

(a) Polygonal simplification

In polygonal mesh simplification, the goal is to simplify a given (triangulated)
mesh ML = (PL,KL) into successively coarser, homeomorphic meshes (P l,Kl) with
0 � l < L, where (P0,K0) is the coarsest or base mesh. Here P l is a set of l point
positions, while Kl encodes the topological structure of the mesh and consists of
triples {i, j, k} (triangles), pairs {i, j} (edges) and singletons {i} (vertices). The goal
now is to allow certain topological operations on Kl which preserve the manifold
property and genus of the mesh. These changes go hand in hand with geometric
changes which are typically subject to an approximation quality criterion.

Several approaches for such mesh simplification have been proposed (the interested
reader is referred to the excellent survey by Heckbert & Garland (1997) for more
details). The most popular methods are the so-called ‘progressive meshes’ (PM). In
a PM construction a sequence of edge collapses is prioritized based on the error it
introduces. An edge collapse brings the endpoints of the chosen edge into coincidence,
in the process removing two triangles, three edges and one vertex (in the case of
interior edges). The point location of the merged vertex can be chosen so as to
minimize some error criterion with respect to the original mesh. The error can be
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Figure 9. If an irregular finely detailed mesh is given, the first task in building a
multiresolution analysis is coarsification.

measured in various norms such as L∞ (symmetric Haussdorff distance), L2 and
Sobolev norms.

For our purposes we are using a PM construction based on half-edge collapses,
i.e. the point position for the collapsed edge is one of its end points. This results
in a mesh hierarchy which is interpolating in the sense that the point position sets
P l are nested. There are several possible ways to define levels of a hierarchy. The
most flexible way treats a single half-edge collapse operation as defining a level. In
contrast to the usual wavelet setting this results in a linear, rather than logarithmic,
number of levels.

Before going to the surface case, we first consider the functional setting and then
treat the surface setting as three instances of a functional setting.

(b) Functional setting: multivariate commutation formula

Just as in the one-dimensional case, irregular multivariate subdivision schemes act
on sequences whose elements are associated with irregular parameter locations. We
introduce levels numbered 0, 1, . . . with level 0 corresponding to the coarsest scale.
Within each level n, the collection of all parameter locations constitute an irregular
grid χn.

We can now introduce a subdivision scheme S as a sequence of linear operators
Sn, n � 0, which iteratively compute sequences fn defined on χn, starting from some
coarsest level data f0 via

fn+1 = Snfn.

In the one-dimensional setting we analysed the regularity of the functions pro-
duced by subdivision through the behaviour of properly defined divided differences.
We proceed similarly for the irregular two-dimensional setting. Let D[p]

n denote the
operator which maps the data sequence fn into the corresponding sequence f

[p]
n of

divided differences of order p, that is f [p]
n = D[p]

n fn. We say that there exists a derived
subdivision scheme S[p] satisfying the commutation formula if the sequences f [p]

n are
related via the relation f

[p]
n+1 = S

[p]
n f

[p]
n , where the S

[p]
n constitute a local bounded

subdivision scheme. Thus we can write

D[p]
n+1Sn = S[p]

n D[p]
n .
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in 3D

difference of normals lies in parameter plane

k

j

values

plane is orthogonal
to 3D segment

angle
right

l1

l2

and their difference;

triangle normals

parameter plane

plane contains both normals

function

common segment

Figure 10. Second differences are associated with an edge. Since they are the difference of two
adjacent triangle normals (first divided differences), one can see that the second differences are
orthogonal to the common edge in the parameter plane.

We then prove that the bounds on the growth of sequences f
[p]
n can be translated

into the smoothness estimates for the functions produced by the original subdivision
scheme S.

In order to extend this construction to the multivariate case we need to define the
multivariate divided differences in such a way that the algebra of the commutation
formula works. This is done in Guskov (1998) for a class of polynomial reproducing
subdivision schemes. It is also shown there that, for multilevel grids satisfying some
natural conditions, the bounds on the growth of these divided differences can be used
to analyse the regularity of functions produced by subdivision.

(c) Constructing a subdivision scheme

In this section we provide a particular example of a subdivision scheme which
in the functional setting produces visually smooth functions on irregular triangula-
tions. Our subdivision algorithm relies on minimizing divided differences. Consider
a triangle {i, j, k} in the parameter plane with corners (xi, yi), (xj , yj) and (xk, yk),
and function values fi, fj and fk. These three function values define a plane. The
gradient to this plane can be seen as a first-order divided difference corresponding
to this triangle. The gradient is zero only if the plane is horizontal (fi = fj = fk).

Next, we define the second-order differences. They are computed as the difference
between two normals on neighbouring triangles and can be thought of as being
associated with the common edge (see figure 10, left). It is easy to see that the
difference between gradients of two adjacent triangles is orthogonal to their common
edge (see figure 10, right). Thus the component D2

ef normal to the edge e can be
used for the second-order difference. It depends linearly on the four function values of
these two triangles. The coefficients can be found in Guskov (1998) or Guskov et al.
(1999). The second-order difference operator is zero only if the two triangles lie in the
same plane, and one can see that its behaviour is closely related to the dihedral angle.
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Figure 11. From left to right: a portion of the fine mesh; the coarse mesh; function produced
by the non-interpolating scheme.

The central ingredient in the design of our subdivision scheme is the use of a non-
uniform relaxation operator which inserts new values in such a manner that second-
order differences are minimized. Define a quadratic energy, which is an instance of a
discrete fairing functional (Kobbelt 1997):

Rfi = argminE(fi) =
∑

e∈K
(D2

ef)
2.

Setting ∂E/∂fi = 0 yields

Rfi =
∑

j∈V2(i)

wi,jfj with V2(i) = . (3.1)

Note that if f is a linear function, i.e. all triangles lie in one plane, the fairing func-
tional E is zero. Consequently, linear functions are invariant under R. In particular,
R preserves constants from which we deduce that the wi,j sum to one.

Subdivision is computed one level at a time starting from level n0 in the PM.
Reversing the PM construction back to the finest level adds one vertex (xn, yn, fn)
per level; the non-uniform subdivision is computed one vertex at a time. The position
of each new vertex n is computed according to (3.1), using areas and lengths of the
original finest level mesh. Next, the immediate neighbours of n are relaxed using (3.1)
as well. The ambition of our strategy of minimizing D2

ef is to obtain C1 smoothness.
However, there is currently no ansatz on the bounds of the divided differences to
prove regularity of the limit function. Figure 11 shows an irregular grid of 20 493
triangles (left), simplified down to 86 triangles (middle). Now associate the value
f = 1 with the centre vertex and 0 with all others. The figure on the right is the
result of running the subdivision scheme back to the finest level. Even though the
grid is irregular the resulting function appears smooth.

(d) Functions on surfaces

In order to build a multiresolution structure on meshes, we first need to intro-
duce the relaxation operator acting on functions defined over triangulated surfaces
in three dimensions. We shall follow the strategy of the planar case and introduce sec-
ond differences for such functions. For this we need to specify some locally consistent
parametrization over the support of the difference operator. Consider a triangular
mesh P in R

3, and let f : P → R. We would like to define the second difference oper-
ator D2

ef for an edge e from the triangulation P. For this we only need a consistent
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s(n – 1)

pre-smooth

d(n)s(n)

subdivision

Figure 12. Burt–Adelson-style pyramid scheme.

parametrization (i.e. flattening) for two neighbouring triangles at a time. Let the
edge e = {i, j} be adjacent to two triangles {i, j, k} and {j, i, l}. We use the ‘hinge
map’ to build a pair of adjacent triangles in the plane. These two triangles in the
parameter plane have the same angles and edge lengths as the two triangles in R

3. We
then define D2

ef as described in the previous section. Using these second differences,
it is easy to extend the definition of the relaxation operator and the corresponding
subdivision scheme to work with functions defined over triangulated surfaces.

(e) Burt–Adelson pyramid

For meshes we found it more useful to generalize an oversampled Burt–Adelson-
type pyramid (Burt & Adelson 1983) than a critically sampled wavelet pyramid.
Let (Pn) be some fixed PM hierarchy of triangulated surfaces. We start from the
function fN : P = PN → R, defined on the finest level, and compute a sequence of
functions (fn) (n0 � n � N) as well as oversampled differences d(n)

i between levels.
Like subdivision, the Burt–Adelson pyramid is computed vertex by vertex. Thus

the four critical components of a BA pyramid: presmoothing, downsampling, subdi-
vision and detail computation are done for one vertex n at a time (see figure 12).
The presmoothing comes down to applying the relaxation operator to the neighbours
of n. Downsampling simply removes the vertex n through a half-edge collapse. We
perform subdivision as described above and compute details d(n) for all neighbours
of n.

In order to see the potential of a mesh pyramid in applications, it is important to
understand that the details d(n) can be seen as an approximate frequency spectrum
of the mesh. The details d(n) with large n come from edge collapses on the finer
levels and thus correspond to small scales and high frequencies, while the details d(n)

with small n come from edge collapses on the coarser levels and thus correspond to
large scales and low frequencies. Hence, the sequence of d(n) for running n can be
seen as an approximate frequency spectrum. Moreover, while the superscript n of
an individual detail vector d

(n)
i corresponds to its level/frequency, the subscript i

corresponds to its location. Thus we actually have a space-frequency decomposition.
It is theoretically possible to build a critically sampled wavelet transform based

on the lifting scheme (Sweldens 1997). The idea is to use an interpolating subdivi-
sion scheme which only affects the new vertex and omits the relaxation of the even
vertices. Consequently, only one detail per vertex is computed and the sampling is
always critical. However, at this point it is not clear how to design updates that make
the transform numerically stable. Additionally, interpolating subdivision schemes do
not yield very smooth meshes and have unwanted undulations. Therefore, critically
sampled wavelet transforms have had limited use in graphics applications.
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(a) (b) (c) (d)

Figure 13. Smoothing and filtering of the Venus head. (a) Original; (b) low-pass filter; (c)
stopband filter; (d) enhancement filter.

4. Applications

In the surface setting we deal with a triangulated mesh P of arbitrary topology
and connectivity embedded in three dimensions with vertices pi = (xi, yi, zi). It is
important to separate the two capacities the mesh P fulfils in our analysis. First, the
original mesh and its PM representation serve as the source of local parametriza-
tion and connectivity information which determines the coefficients of our adaptive
relaxation operator.

Second, if our purpose is to process the geometry of the mesh, it is crucial to
treat all three coordinates x, y and z as dependent variables. In fact, we consider the
coordinates of the mesh to be real functions on the current PM vertex set. Initially,
before any changes in geometry take place, these functions can be viewed as identities.
When the wanted processing operations, such as filtering or editing, are applied to
the data, these functions become more meaningful.

As an example of possible application of our scheme we present various manipula-
tions of the scanned Venus’s head model. The original mesh has 50 000 vertices. After
building a PM hierarchy, we use our BA pyramid scheme to build a multiresolution
representation. We can use different manipulations of the detail coefficients in order
to achieve various signal processing tasks. Specifically, if all the detail coefficients
finer than some level are put to zero, we achieve a smoothing effect (in figure 13b
all the details on the levels above 1000 were set to zero). The stopband filter effect
is achieved by setting to zero some range of coefficients (in figure 13c all the details
between the levels 1000 and 15 000 were set to zero). One can also enhance certain
frequencies (in figure 13d all the details between the levels 1000 and 15 000 were
multiplied by two).

5. Conclusion

One of the current frontiers in wavelet research and applications is the generalization
of multiresolution methods from the regular to the semiregular and, more recently,
irregular setting. We have given a brief review of these developments, starting with
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the one-dimensional setting and moving on to the two-dimensional functional and
manifold settings. While there exists an extensive set of tools for the analysis of
wavelet constructions in the regular setting, such tools have only recently begun to
emerge for the irregular setting. One such tool is the generalization of commutation
from the regular to the irregular setting. We have applied these ideas by propos-
ing new irregular subdivision schemes in the manifold setting which are explicitly
designed to minimize certain differences. Little is as yet known about the analytic
smoothness properties of the resulting constructions, but numerical evidence suggests
that they are quite useful for practical applications.
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P00004) and AFOSR (F49620-98-1-0044). I.G. was partly supported by a Harold W. Dodds
Fellowship and a Summer Internship at Bell Laboratories, Lucent Technologies.
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Zorin, D., Schröder, P. & Sweldens, W. 1996 Interpolating subdivision for meshes with arbitrary
topology. In Computer graphics (SIGGRAPH ’96 Proc.), pp. 189–192. ACM SIGGRAPH.

Phil. Trans. R. Soc. Lond. A (1999)


