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The thermodynamic formalism for “multifractal” functions (z) is a heuristic princi-
ple that states that the singularity spectrum f(«) (defined as the Hausdorfl dimension of
the set S, of points where ¢ has Holder exponent o) and the moment scaling exponent
7(q) (giving the power law behavior of [ |p(z + t) — ¢(x)|9 dr for small [t]) should be
related by the Legendre transform, 7(q) = 1+ ;gf;) fga— f(a)]. The range of validity of

this heuristic principle is unknown. Here this principle is rigorously verified for a family
of “toy examples” that are solutions of refinement equations. These example functions
exhibit oscillations on all scales, and correspond to multifractal signed measures rather
than multifractal measures; moreover, their singularity spectra f(o) are not concave.

1. Introduction

“Multifractal” models were originally proposed to describe the intermittent be-
havior of fully-developed turbulence (Mandelbrot (1974), Frisch, Sulem and Nelkin
(1978), Benzi, Paladin, Parisi and Vulpiani (1984), Frisch (1985), Frisch and Ver-
gassola (1991)); see Frisch (1991) for a historic review. In recent years such models
have been applied as well to describe chaotic features in dynamical systems (Eck-
mann and Ruelle (1985), Halsey et al. (1986)); see Amritkar and Gupte (1990) for
an extensive review.

A basic descriptive quantity underlying the multifractal models is the “singu-
larity spectrum”. In Frisch and Parisi (1985) it is denoted d(a) and it represents
the Hausdorff dimension of sets of points in which the velocity field is not Holder
continuous of order a. It is suggested that d(«) is a “universal” quantity of such
turbulence. Frisch and Parisi propose a procedure to estimate this quantity from
measurements of exponents (, describing the asymptotic power law behavior of
moments of velocity increments,

(o) —v(@)PP) _~ = Clz—yl*. (1.1)

lz—vl

They present a heuristic argument (see also p. 255 in Falconer (1990) or the in-
troduction of Brown, Michon and Peyriére (1992)) showing that ¢, is the Legendre
transform of the “co-dimension” 3 — d(a), i.e.

Cp = igf [pa+ 3 —d(a)] . (1.2)
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If d(a) is concave (as it is often assumed to be), then it can be recovered from
¢p by the inverse Legendre transform.

In Halsey et al. (1986) the singularity spectrum is denoted by f(a) and is asso-
ciated with a measure pu(x) on the attractor of a dynamical system in R”. For each
point x they define a local singularity ezponent a(x) by

ok log p(1.)
a(z) = hgles%lp Tloge (1.3)

where I, denotes a cube of side ¢. Then for a > 0 the singularity spectrum f(a) of
the measure u(x) is the Hausdorff dimension of the set

Soa={z €R”; a(z) =a} . (1.4)

Again f(o) is proposed as a new universal invariant, now for strange attractors and
routes to chaos. It is also related to an associated generalized dimension Dy, pro-
posed by Hentschel and Procaccia (1983), and essentially based on the information
measure of Renyi (1970). One way of defining the generalized dimension D, is

Dy=(q-1) 7(9), (1.5)
where
g | | u(B() " du(o)]
loge

, (1.6)

7(q) := lim

in which B() is the ball of radius € centered at z. (In fact D, is defined differently
in Halsey et al. and (1.6), (1.7) are given as derivations.) 7(gq) is automatically a
concave function of ¢. Halsey et al. (1986) proposed estimating f(a) using the
Legendre transform of 7(g). The similarity between Frisch and Parisi (1985) and
Halsey et al. (1986) is clear. In particular, if one works in dimension n = 1, then
Be(z) =[x — ¢, £+ €], and 7(q) can be rewritten as

log | [ (6l + ) - oz - )" du(o)]
loge

7(g) = lim , (1.7)

where
o) = [ dutw). (18)

(We implicitly assume that g has no discrete part, meaning that u({z}) = 0 for
any singleton {z}.) The function p(z) plays the role of the velocity function v(x)
in (1.1), and (1.7) shows that r(q) is analogous to (,.

The Halsey et al. (1986) framework does not include the Frisch and Parisi (1985)
framework: the one-dimensional analog of (1.1) would involve the power law scaling
of a function (the velocity field) that is not nondecreasing, unlike the cumulative
distribution function of a measure such as ¢ in (1.8). To include such functions one
must allow signed measures. Our formulas (1.11)-(1.13) below give extensions of the
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concepts above to (integrable) signed measures. In both frameworks the singularity
spectrum is viewed as the fundamental quantity, and the “moment scaling expo-
nent” ¢, or 7(q) is considered merely as an auxiliary quantity, possibly useful in the
estimation of the singularity spectrum. However, 7(g¢) can also be interpreted as a
generalization of the entropy, and can thus be viewed as an ergodic-theoretic invari-
ant in the special case of a dynamical system ergodic with respect to an invariant
measure, cf. Eckmann and Procaccia (1986).

The Frisch and Parisi (1985) procedure of determining a moment scaling expo-
nent 7(g) from experimental data and then taking its inverse Legendre transform is
now often called (by some authors) the “moment method”. It was applied in Jensen,
Kadaroff and Libchaber (1985), who briefly argue that it should be more stable than
a direct evaluation of a(z) and f(a) because 7(g) smooths the data. Since then
the moment method has been used in many studies as a tool to estimate f(a);
see e.g. Amritkar and Gupte (1990). Note that there is another general approach
to estimate the singularity spectrum from experimental data, without recourse to
moments; this method uses a direct double histogram approach described in Men-
eveau and Sreenivasan (1989) and long advocated by Mandelbrot (see Mandelbrot
(1993)).

Yet another way of linking f(a) and 7(q) is the “thermodynamic formalism”,
which goes back to Bohr and Rand (1987). In this approach r(g) is analogous
to free energy, and its Legendre transform S(a) is analogous to entropy; more-
over, f(a) and S(a) can be derived from each other. This derivation implicitly
assumes that f(a) is concave; as observed in Bohr and Jensen (1987), f(a) need
not be concave in general, and the equation relating S(a) and f(a) becomes an
inequality when f is not concave (see also below). For some multifractal models,
the function 7(q) exhibits different regimes, separated by “critical values” of q; the
thermodynamic formalism interprets these as analogues to phase transitions (see
Csordas and Szépfalusy (1989)). See Tel (1988) for a review of multifractals and
thermodynamics.

In one form or other, most of the approaches summarized above seem to support
the following heuristic principle:

Thermodynamic Formalism for Multifractals. The moment scaling exponent
7(q) is equal to the Legendre transform

@= inf [ag+n—f(], (1.9)

where f(a) is the singularity spectrum, and n is the dimension of the model or
system under study.

In most papers, smoothness of f(«) is presupposed, in which case (1.9) simplifies
to the form

7(q) = a(g)g +n — f(a(q))
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where a(q) is the value of a such that
fla)=4q.

The more general form (1.9) is needed for discontinuous f(a).

The usefulness of this heuristic principle as applied to data has generally been
to recover f(a) when 7(gq) was computed or given. This is possible only if f(a) is
concave, in which case if (1.9) holds, we have

f(a)=S(a) :=n— Sl;p [r(g) —gqa] . (1.10)

If f is not concave, then (1.9) only implies f*(a) = S(a), where f*(a) > f(a) is
the concave hull of f(a).

This paper is concerned with rigorous results. Most of the papers mentioned
above are not mathematically rigorous, and the exact range of validity of the heuris-
tic principle above is not known. In the form in which we have stated it, no coun-
terexamples are known; in the stronger form in which it is often used, asserting
(1.10) rather than (1.9), every situation with a nonconcave f(a) is of course a
counterexample. (One such counterexample is Example 1 in Brown, Michon and
Peyriére (1992).) In the framework closest to Halsey et al. (1986) the thermody-
namic heuristic principle has been justified rigorously in a number of situations,
including Gibbs measures of hyperbolic attractors (Grassberger, Badii and Politi
(1988)), cookie-cutter Cantor measures (Bedford (1988, 1991), Rand (1989), Fal-
coner (1990)), certain probability measures (Brown, Michon and Peyriére (1992),
Peyriére (1993)), Moran fractals (Cawley and Mauldin (1992)), digraph recursive
fractals (Edgar and Mauldin (1992)), various routes to chaos including Feigen-
baum period-doubling (Collet, Lebowitz and Porzio (1987)) and self-affine fractals
(Schmeling and Siegmund-Schultze (1993)). As far as we know the existing rigorous
results for the thermodynamic heuristic principle only apply to multifractal mea-
sures u. The only papers we know of that discuss related questions for possibly
oscillating functions (which can be viewed as associated with signed measures), are
Jaffard (1992), which gives an inequality for the Hausdorff dimension of the set
where a W*?(R") function is not in C* (with a < s), and Eyink (1993), which
pushes Jaffard’s arguments further to prove that 7(g) is bounded above by the
right-hand side of (1.9) if ¢ lies in some appropriate Besov spaces.

The object of this paper is to present a family of one-dimensional examples com-
ing from intrinsically signed measures for which the thermodynamic formalism can
be verified rigorously. These examples are interesting for several reasons. First, the
singularity spectrum of signed measures is intrinsically more difficult to analyze,
and it is useful to have a verified example closer to the Frisch and Parisi (1986)
framework. Even though our constructions do not derive from a physical example,
they can still be viewed as a caricature of a velocity field, in that they exhibit oscil-
lations at all scales. Second, our examples have a non-concave singularity spectrum
and exhibit a “phase transition”. Third, the sets S, in our examples are all dense
(for an appropriate range of «), implying that their box counting dimension is 1,
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independently of a. This shows that the use of the Hausdorff dimension in (1.9) is
crucial: it cannot be replaced by the box counting dimension. It also shows that
our examples fall outside the framework considered in Corollary 1 in Eyink (1993),
where (1.9) is proved for those functions for which the Hausdorff dimensions and
the box counting dimensions of the S, coincide.

We now introduce some precise definitions adapted to our point of view. For
@ € L}(R) we define its singularity spectrum f,(a) and its moment scaling exponent
7,(q) as follows. The singularity spectrum f(a) for o > 0 measures the Hausdorff
dimension of the set of points S, () where ¢ has lower Holder exponent exactly a.
More formally, we set

log |p(z +t) — o(t)]
g , (1.11)

a(z) = lllﬁl-l%f

and let So = {z; a(z) = a}, f(o) = dimyaysd.(Sa). We shall also say that ¢ €
C*(z) (“p is lower Holder continuous in z with Holder ezponent o”) if a(z) = a.
For the moment scaling exponent, consider the Renyi information measure of order
9,

16,0 = [lple+0) - p(@)rds . (112)

Now 7(q) should measure the scaling exponent in the asymptotic behavior of
I(t,q) ~ cg|t|™@) as |t| — 0, so we formally define the scaling ezponent 7(q) by

7(g) := lim inf log |1(t, )l

1
[t[—0 loglt| (1.13)

i.e. 7(q) is the lower Holder exponent of I{¢,q) in ¢ = 0. Note that the domain
of 7(q) may have to be restricted to values ¢ where I(t,q) is defined. The same
problem already presents itself for ¢ which are cumulative distribution functions of

a measure p; in that case one can however (and usually does) restrict the domain
of integration in

Itt,q) = / le(z +1) — p(2)]t dz = / u()z, 2 + )1 dz

to those z for which p(]z,z +t]) # 0 for all ¢ > 0; this leads then to a meaningful
definition of 7(g) for all ¢, positive and negative. For non monotone ¢ things are
not that simple, as shown by the very innocuous function ¢(z) = z(1 — z) on
[0,1] for which I(t,gq) diverges for ¢ < —1. In this simple case it would be easy to
excise the offending point z = %, but for more complicated functions, which present
oscillations at every scale, this is not feasible.

We shall prove that

7(¢g)= inf [aq+1- f(a)] (1.14)

holds for a family of “toy examples” ¢(z) which are solutions of particular refine-
ment equations (also called two-scale difference equations or dilation equations),
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i.e.

L L
p(z) =) cj ¢(2z—j), with Y cj=2. (1.15)
=0

j=0 J

Such functions arise in subdivision schemes in computer aided design (see e.g.
Cavaretta, Dahmen and Micchelli (1991) for a review and many references) and
in the construction of orthonormal wavelets (see Daubechies (1988, 1992)). Un-
der special conditions equations of type (1.15) have a unique L!-solution (up to a
multiplicative constant) which necessarily has compact support. They are always
only finitely many times differentiable (Micchelli and Prautzsch (1989)) and exhibit
a complicated “multifractal” set of Holder exponents in general (Daubechies and
Lagarias (1992)). In particular, the regularity of ¢ is governed by the spectral prop-
erties of the matrices T(n;d) = Ty, - -- Ty, , where dj = 0 or 1 and Tp, T} are two
matrices constructed from the c;, see Daubechies and Lagarias (1992) and Micchelli
and Prautzsch (1989). The Holder exponent a(z) of f in = depends on the rela-
tive frequency of the digits 0 and 1 in the binary expansion of z. The Hausdorff
dimension of the sets containing all the z in [0,1] with a fixed preassigned den-
sity of the digit 1 in their binary expansion is well-known (Besicovitch (1934) and
Eggleston (1949)), so that we can determine f(a) explicitly. On the other hand,
detailed knowledge of Ty, T7 and their products can be used to compute 7(g). This
enables us to prove formula (1.14) directly. The method to estimate local exponents
is an extension of that given in Daubechies and Lagarias (1992); it requires however
more detailed estimates, and, in particular, the determination of optimal pointwise
Hélder exponents. The method of calculation of f(a) and 7(gq) given here can be
done in principle for any refinable function, but since we had to make explicit and
very detailed estimates, we only carried it out on specific examples.

The simplest family of examples is given by ¢ = v, ¢;1 = 1, ¢ = 1 — 7, with
% < 4 < 1, and all other ¢; = 0. The resulting function is continuous and supported
on [0,2], and is monotonically increasing on [0,1] and monotonically decreasing
on [1,2]. Because of the monotonicity properties of ¢, these examples essentially
correspond to positive measures, and formula (1.14) can already be deduced from
theorems proved in Falconer (1990). In this example we have in fact, for 0 < z < 1,

o k-1
pz+1)=1-¢(z), and p(z)=a)_ de(@) [ Y450 »
k=1 j=1

where di(z) is the k-th digit in the binary expansion of z, and yo = a, 11 = 1 — .
Then one can check that, for z € [0,1], p(z) = po([0,z]), where uq is the singular
probability measure on [0, 1] obtained as the limit of a Cantor-like splitting process
in which intervals are halved, and the first half is given weight «, the second weight
1 — . This is in fact one of the first measures for which (1.9) was established.
This paper studies in detail a more complex family of examples, which is given
by the choice ¢o = 3, 3 =ﬂ+%, ca=1-p8,¢3 = %—,3, with % < B <1, and
all other ¢; = 0. (For technical reasons, we shall eventually restrict 8 to the range
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% <p< %) That is, the corresponding function ¢ is a solution of

o(a) = p22) + B+ 3 ) wl2e = 1)+ (1= Doz~ )
(1.16)

+(%—ﬁ)w@z—m-

For % < B < 1, the function ¢ is continuous and supported on [0, 3], but it is
non monotone on any interval [a,b] contained in [0,3] (with a < b). This exam-
ple does therefore not fit into any of the categories for which the thermodynamic
heuristic principle was previously proved rigorously to hold. We shall show that
(1.14) does indeed hold for ¢ > 0. We do not consider ¢ < 0, because for most
negative values of ¢, the expression (1.12) for I(t,¢) is not defined.

For % < B < %, the range of 3 on which we shall concentrate, the singularity
spectrum f(a) for our functions ¢ will be discontinuous and non-concave; more

precisely, f is nicely concave and increasing for & < 1, but  lim . fle) < f(1)=1.
o2

Thus f(a) exhibits a “phase transition” and this provides therefore yet another
example where (1.10) is not true; the inverse Legendre transform of 7(gq) can only
give the convex hull of the graph of f(a).

On the basis of these examples, it seems reasonable to conjecture that the ther-
modynamic formalism heuristic is true for all continuous functions ¢(z) arising as
the solution of a refinement equation of type (1.15), and possibly also of larger
classes of refinement equations.

We call our examples “toy examples” because they do not stem from a physically
motivated dynamical system. Nevertheless, because they are nontrivial and at the
same time sufficiently simple to be understood in great detail, they may be useful
as a laboratory to test out further developments such as the impact of noise in
the “data” @(z) on the computation of 7(q) and of (the convex hull of) f(a), or
proposals to replace I(t,q) by related but different “averages” (e.g. using wavelets)
so as to define 7(q) also for ¢ < 0.

This paper is organized as follows. In Sec. 2 we recall the definitions of the ma-
trices Tp, T} corresponding to (1.16), and we quickly review those of their properties
that we will need. We also derive detailed bounds on ¢ that will be needed further.
In Sec. 3 we show how to compute the Hélder exponent of ¢ in any z (including
points for which the “density of the digit 1” is not well defined). In Sec. 4 we use
the results of Sec. 3 to compute f(a) and its Legendre transform. Then, in Sec. 5,
we compute 7(gq) for our examples, and we show that (1.14) holds, at least for ¢ > 0.

2. Using the Refinement Equation to Derive Properties and
Bounds for ¢

We want to study the function ¢ defined by

o(z) = Bp(22)+ (ﬂ + -;-) o2z —1)+(1— B)p(2z—2) + (% - ﬁ) o(22-3). (2.1)
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This function is uniquely determined by the additional requirement that ¢ € L!(R)
and by the normalization [ ¢(z)dz = 1. It is real and compactly supported; its
support is [0,3]. Moreover, ¢ is continuous. (All this, and more, immediately
follows from the general discussion of refinement equations in e.g. Daubechies and
Lagarias (1992), Cavaretta, Dahmen and Micchelli (1991) or Daubechies (1992).)
In order to discuss the regularity properties of ¢, it is useful to rewrite (2.1) in a
vector notation. For z € [0,1] we define v(z) = (p(z), p(z + 1), p(z +2)) € R3;
(2.1) implies then

o(z) = Tp v(22) ifz€ [o, %] (2.2)
—Tyu(—1) ifze [%1] , (2.3)
where
B0 o S4B B 0
n-|1-8 3+5 8 | - 3-8 1-8 348
0 %-ﬂ 1-8 0 0 %—ﬂ

Using v(0) = (0,28,1 - 23), v(1) = (28,1 — 28,0), one easily checks that there is
no inconsistency at ¢ = 1. If we denote by dx(z) = 0 or 1 the k-th digit in the

binary expansion of z,
00

= E dk(:l:)?_k s

k=1
and by o the shift operator,

o
di(oz) = dpya1(z), or oz = Z dk(z)2'k+1 ,
k=2

then the equations (2.2), (2.3) can be rewritten as
o(2) = Tay(oy9(02) (24)
which is now valid for all z € [0, 1]. More generally,
v(z) = T(n;d(z)) v(e"z) , (2.5)

where T(n;d(z)) = Ty,(z) " Ta.(s)- (For dyadic rationals z, z = 2=V K with
K € 2N + 1, there exist two binary expansions, one in which dy(z) = 1 and
dn(z) = 0 for n > N, and another in which dy(z) = 0 and d,,(z) = 1 forn > N. We
shall denote the first by d*(z), the second by d=(z), and call them the expansions
“from above” and “from below”, respectively. The two right-hand sides of (2.5)
corresponding to the two choices for d(z) give identical results; see Daubechies and
Lagarias (1992).)
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It follows from (2.5) that if z + ¢ and z have the same first n digits in their
binary expansions (implying |t | < 27"), then

[o(z + 1) — 2(2)] = Tay(e) -+ Tay (o [0(0™2 + 21) = v(0"2)] .

This formula shows that bounds on T'(n;d(z)) are the clue to bounds on v(z +1t) —
v(z), hence to regularity properties of ¢ in z.
Note that e; = (1,1,1) satisfies e;Tp = €y = €, 71, implying that

enT(n;d) =e; . (2.6)

This gives us already one eigenvector for T'(n;d), with eigenvalue 1. We also have
that e; = (2 — 20,1 — 203, —20) satisfies esTp = %62, e 11 = %62 + %61, so that

ezT(n;d) =2""eq + (i 2_kdk) e . (27)

k=1

It follows that the second eigenvalue of T'(n; d) is 2=". Finally, e3 = (1,0, 0) satisfies
e3Ty = PBez and e3T) = (% - ,3) es + Bea + 2%, implying

esT(n; d) = p(n; d)es + Mn; d)ez + v(n; d)es (28)

where u(n;d) = H;‘:l pa; and po = B, py = % — 3 are the respective third eigen-
values of Ty, T}, and where

A(n;d) = ﬂde 27"k — 1;d)
k=1

) =4, [52¢k - 1500 + 2870k - 1,0
k=1

=8 di p(k - 1;d) [2ﬁ+2’° > 2-‘4,] :
k=1

t=k+1

Here we use the standard conventions that a product pj, ;, = H;’zh w; equals 1
if j2 < ji, whereas a sum s;, ;, = EJ:’:J-I%- equals 0 if j; < j;, meaning that
#(0,d) =1, \(0;d) = 0 and 3j_, ., 2 %d, = 0 if k = n. It follows from (2.8) that
the third eigenvalue of T(n;d) is u(n;d). In the range 3 < § < 1 of interest to us,
it is easy to find many values of 3 for which u(n;d) = 2" for appropriately chosen
n and d; we will therefore not be able to assume that T(n;d) is diagonalizable in
general. This accounts for some of the technicalities in the detailed estimates below.

In Daubechies and Lagarias (1992) it is shown how equations of type (2.6), (2.7)
and (2.8) imply the following facts on ¢(z) and v(z) which we summarize here
without detailed proof:
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Proposition 2.1. Assume that ¢ is the L solution of (2.1) that is normalized
so that [ (z)dz = 1. Then ¢ has support(0,3], and it is a continuous real function.
For z € [0,1], v(z) = (¢(z), p(z + 1), p(z + 2)) satisfies

(1) er-v(z)=1 (2.9)
(ii) ez-v(z)==z (2.10)
(iit) there exists C > 0 so that |jv(z) — v(y)|| < C | z — y |Io82F | (2.11)

Proof. Parts (i) and (ii) are easy consequences of (2.6) and (2.7) and the
continuity of ¢. (In Daubechies and Lagarias (1992) continuity is not assumed a
priori, but proved as well.) Part (iii) is a consequence of e; - [v(z) — v(y)] = 0, and
ez [v(z) —v(y)] |, | es-[v(z) —v(y)} | K CB" if |  — y |< 27™. See Daubechies
and Lagarias (1992) or Micchelli and Prautzsch (1989) for more details. O

We can write an explicit formula for ¢(z). From (2.9), (2.10) it already follows
that for z € [0, 1]

plz+1)= -2p(z)+z + 28 (2.12)
e +2)=pz)-z+1-28. (2.13)

Moreover
p(z)=ez-v(z)= lim e3 - T(n; d(z))v(0) ;

n—o0o

since | p(n;d) | < " and | AM(n;d) | < 827" Y p_,(20)* < ;L[:—; both tend to zero
for n — oo, we have therefore

p(z) = lim y(n;d(z))

= ﬂidk;‘(k —1;d(z)) {28 + o*2] . (2.14)

k=1

If z +t and z have the same first £ binary digits, then we have also

p(z +1) — p(z) = e3 - T(£;d(2))[v(0"(z + 1)) — v(0“2)]
= Mt d(2))[ol(z + 1) — o’z] + p(L d(2))[p(o* (2 + 1)) — p(o*2)]

3
= 43 (@2 ulk — 1;2) + u(6 (o= + 1)) - p(e2)],
k=1

(2.15)

where we have introduced the shorthand u(¢; z) for p(¢; d(z)).

The two formulas (2.14) and (2.15) are our main tools in deriving detailed esti-
mates on ¢ that will be used in Secs. 3 and 5. Let us first compute some special
values for ¢(z),

p(1)=28, ¢ (%) =20%;
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more generally,
P2 ™) =26"*" neN. (2.16)

By (2.12), we also have, for 0 < z < 1,

P (a: + -;—) = B2z + 1)+ (-;— + ﬁ) ¢(2z)

1
(3-8) wize)+ 200 +) (217)
3-8
B
In particular, ¢ (%) =0 (% + 38— 2ﬁ2).
We next prove upper and lower bounds on ¢(z), in a series of lemmas that
establish successively tighter bounds. We start with

p(z) +26(z + B) . (2.18)

Lemma 2.2, Forallz € [%, 1],

0<ﬁ<2ﬂ—2ﬁ2+%) <p(z) < @B+ 1.

Proof. (i) Define A = 3 Joax) p(z), B = 3 min p(z). Because ¢(z)

2=

1
7
Be(22) if 0 < z < }, we then also have A = %

= Orsnfg(l ¢(z), min(0, B) =
/17 0r<nzir<11 #(=).
(ii) Take ¢ = 2(1+ y) € [3,1], ie. y € [0,1]. Then (2.17) gives
1
o(a) = (5-8) w0)+828+3)
Consequently
A<28+1- (ﬁ - %) min(0, B) (2.19)
B >23- (,3 - %) A. (2.20)
(iii) Suppose that B < 0. Then it would follow that
1 1
(- o=
or

B> 26~ 25"+,

1\ 2
1-(g-=
[ (5-3)
which is impossible since 23 — 242 + % and 1— (ﬁ - %)2 are both strictly positive for
% < B < 1. Consequently B > 0, and (2.19) then implies A < 28 + 1. Substituting
this into (2.20) gives B > 28 — 2% + 1. O
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This proof has implicitly proved the following corollary which we shall use in its
own right:

Corollary 2.3. Forallz €[0,1], 0 < p(z) < (268 +1)8.

Next, we use the upper bound from Lemma 2.2 in a bootstrapping argument to
derive a tighter upper bound.

Lemma 2.4. For allz € [0,1],
o(z) <26 . (2.21)

Proof. (i) It is sufficient to prove (2.20) for § < z < 1, since ¢ (£) = Bp(z).
(ii) Take z = L + 3y € [1,3],ie. y €[0,1]. Then (2.17) implies

1 1
p(z) =B (5 - ﬂ) ply) +5 (2ﬂ + §y)
1 1
<p’ (5 - ﬁ) 286+1)+ 8 (2,3 + 5) , (2.22)
where we have used the upper bound in Lemma 22. But (2.22) =
Bl-26°+328+1] and —28° + 38+ 1 < 2 for B € [},1]. So (2.21) follows if
=€ [33]-
(iil) Since ¢(1) = 28, we have therefore

max, p(z) = Jnx p(z)=A.

Forz =3+ iy e (3,1],ie y€[0,1], (2.14) implies
1 2 1 1 1
o@) = (3-8) v +8 (204 5+39) +8(5-6) 20+0)
2
<(3-8) a+pes+n+s(3-0) o).

Consequently

A

1 ? 3
1- (3-9) ] <es+s(3-8).
which gives A < 28. Consequently ¢(z) < 28 for all z € [0, 1]. a

This upper bound implies a lower bound:

Lemma 2.5. For allz € [0,1], ¢(z) > 2p=.
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Proof. (i) We first prove this for z € [},1]. Take z = § + 32, 2 € [0,1]. Then
o(2) =202 = (5= 0) ol2) + A8 +2) = (1 +2)
- (ﬂ— %) 28— p()] 2 0.
(ii) Take now z € [0,3]. There exists L so that 2=L=1 <z < 2=L. Then
p(z) = Bro(2Fz) > p* 26 2=

= (26)" 28z > 26z . O

And this in turn gives rise to an even more precise upper bound,
Lemma 2.6. For2L-1<z<2°L [ €N, we have
p(z) < 220)(1 - Bz +265+1(28 - 1) .

Proof. (i) We first prove this for L = 0. Then z € [},1],ie. z = 3+ %y with
y €[0,1], and

o(2) = (3-#) o) + 828+3)

< (3-8)2u+50+9)
= 208y(1 - B) + 26°
=48(1-B)z +28(26-1) .
(ii) For 27L-! < £ < 2L with L > 1, we have
p(z) = BLp(2"2)
< B" [48(1 - B)2 = +28(28 - 1))
<228)"H (1 - Pz + 2851 (26— 1) . o

We can now use all these results to derive our final lemma. in this section, on
upper and lower bounds on ¢(z + 1) — ¢(z) if B is not too large.

Lemma 2.7. Assume $ < B < 3. Then we have, for all z € [0, %],
<

ﬂ(1+6ﬁ—8/32)5¢(z+%) —<p(x)§2ﬂ25§.

e BT
DN =
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Moreover, if z < 2L with L > 2, then the lower bound can be sharpened to

(1: + ) (z)>28°+pB[27L - (48 - 1)B*]

Proof. (i) From (2.17) we have

()

—h_ 1] o(z) + 26(8 + 2)
) e(z)+28(8 + )

- 2) 20z + 20(8 + z)

ﬂ +(1—2ﬂ)zs2ﬂ2-

(i) Take L > 1, L € N so that 2=%-! <z < 2-%. Then
) 2202411 - Bz + 25728 - )]

— =2

(I+ %) —o(z) 2 <2ﬁ

+208(8+z) .
The right-hand side is a linear function of z, with slope 23 — 2(1 — 3)(48 — 1)(28)*
this is bounded above by 28[1 — (28)Y~1] < 0, so that the highest

3 . .
value is attained at the lower edge of the interval, z = 2=£~1. This leads to
. (2.23)

for ; <B<%,

o(2+3) - (@) 2 20 + 4127 - (49 - 15"

(iii) Now F(A) = 27* — (48 — 1)p* has a unique minimum for A € [0,00). If

F'(1) > 0, then this minimum lies to the left of 1, so that infy¢(100) F(/\) = F(1)in

this case. Now F'(1) = =7 log2 — 8(48 — 1) log 8 has a zero at ,B 1 and another
at 3 ~ .839; it is positlve m between. Consequently, for 1 5<p 5 2 we have

<p<z+ 1) ~ o(2) zzﬂ2+ﬁ[§—(4ﬁ—1)ﬂ]
1/3(1+6ﬁ—8ﬁz)z§-

(iv) The sharper lower bound for z < 2=%, L € N and L > 2 immediately follows
.|

from (2.23) and F'(A) > 0for A> 1
To conclude this section, let us have a look at the graph of ¢ for one particular

value of 3, namely 8 = .74. Fig. la shows p(z) for 0 < z < 3, Fig. 1b the restriction
to 0 < z < 1. The lower and upper bounds for Lemmas 2.5 and 2.6 are also graphed

To illustrate the fractal nature we have also graphed two successive blowups of the
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function near z = % = .5625, in Figs. 2a and 2b. At the scale of Fig. 2b the region

to the immediate left of 9/16 seems uneventful, but with sufficient magnification
similar phenomena will show up there as well.

ok~ .

1 1 1 1

0 0.2 0.4 0.6 0.8 1.0

Fig. 1b. Blowup of the restriction of ¥ to [0,1]. The upper bound of Lemma 2.6 is graphed in
short dashes; the lower bound of Lemma 2.5 in long dashes. ‘
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1.10 T —

P(x)

1.05 |

1.00 ' !
0.50 0.55 0.60

T
1

1.048 ?(x)

1.046

1.044

1

0.5622 0.5624 0.5626 0.5628
X

Fig. 2. Two successive blowups of ¢(z) near z = ng = .5625, again for 3 = .74.

3. Computing o(zx)

Proposition 2.1 iii) already implies that a(z) > | log, 8 |= h for all z € [0, 3].
This worst Holder exponent | log, 8 | is achieved in e.g. z = 0, as shown by

| 0(27") = ¢(0) I=] 9(27") |= 8" | ¢(1) |= C27"o82 A1 |

where C' > 0. It then follows from (2.12) and (2.13) that a(1) = a(2) = a(0) =
|log, | as well. The best possible Holder exponent a(z) for z € [0,3] is
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| logy(B — ) |; this is achieved in z = 3; indeed, for 0 < ¢ < 1, we have

1 n
98- 2770 = @) = 93270 | = (8- 3) 193 -1)]
< C 2~nega(B~ I

where the inequality is an equality, with C = | ¢(2) |=28 -1, if t = 1.

A continuum of intermediate values for a(z) between these upper and lower
bounds can be attained; in this section we compute the exact value of a(z) in
sufficiently many points z to allow us to derive f(a) in the next section. This
constitutes a refinement of results in Daubechies and Lagarias (1992), where only
a lower bound on a(z) was derived, for fewer points z.

The following proposition enables us to concentrate mostly on ]0, 1.

Proposition 3.1. Take z € ]0,1[. Then the following are true:

(i) a(z) <1 a(z+1) <1 a(z+2) <1 and moreover a(z) = a(z +1) =
a(z +2) if any of the three is less than 1.

(i) e(z) 21 a(z+1)> 1S a(z+2)>1

(iii) if one of a(z), a(z + 1), a(z + 2) is strictly larger than 1, then the other
two equal 1.

Proof. These are immediate consequences of (2.12) and (2.13). O

We shall therefore compute a(z) only for z € ]0,1[. Our main tool for the
computation of a(x) will be formula (2.15), which gives p(z + t) — ¢(z) if z and
z +t have the same first n binary digits,

plz+1) = p(z) = u(n; 2)p(c™(z +1)) — p(e" D)+ Bt 3 de(2) 2 u(k — L;z) . (3.1)
k=1

Let us be naive, and assume that |t| ~ 2 "~!. We assume furthermore that for
the purposes of estimating (3.1) we may take | u(¢;z) |=| po [¢724® | py |*¢®)
~ [ﬂl-"(r) (B- %)'(z)]t, where s4(z) = Ei:l di(z) is the number of times 1 occurs
in the first ¢ digits of z, and where r(z) = limy— o0 %st(z) is presumed to exist. If
B (8 — -;-)'(z) < 1, then the second term in (3.1), of order 2=", will dominate,

and we will find a(z) = 1. If 1) (8 - %)r(z) > 1, then we expect the first term
to dominate, leading to the Holder exponent

1
a(z) = [1 = r(a)) | logs £ +(s) g, (5 - 3) I< 1.,
This intuition is essentially correct, but we will need some amount of work in order
to bridge the gap between being naive and proving a theorem. What can go wrong?
First of all, the binary expansion of £ could contain very long stretches of ones
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or zeros, so that [t| may have to be much smaller than 27" in order to ensure
that z and z + t have the same first n digits. Second, }s,(x) may fail to have
a limit for £ — oco. Finally, we have been very cavalier in our estimations: since
P = %— B < 0, (3.1) contains positive and negative terms. When we “expect” the
first term to dominate, the second term in (3.1) is the partial sum of an infinite
series which does not converge absolutely, so we have to be very careful in our
estimates. In fact, the second term will be of the same order as the first one, and
we will have to prove that no cancellations occur that could spoil our intuition.

We shall start our computation of a(z) by the computation of a lower bound,
where the cancellations mentioned above don’t matter (they can only decrease
| ¢(z +t) — @(z) |, thereby increasing the Holder exponent). The first two dif-
ficulties are then addressed by introducing the following appropriate definitions.
Given z € [0,1], with binary digits di(z), and given N € N, we define

(z)=0 if dy(z)=0
k if dN(:C) =l=..-= dN—k+1(37)
and dN_k(.’L') =0.
Clearly £i(z) is the length of the uninterrupted stretch of ones preceding (and

including) dn(z). We define £ (z) analogously as the length of the stretch of zeros
preceding dy(z). Define now an(z) by

272NN = | W(N — £y (2);2) | ™ (3.2)
N [ﬂ _ 1/2] sN(z)~ Lty (7)
A ,
le.
an(z) = |logy 8| +2E (=) |, B=1/2

N 8

Finally, define a(z) by
a(z) = l}vminf an(z) .

Remark. Note that we don’t even have to worry about which binary expansion
to take if z is a dyadic rational; for sufficiently large N we have

’

2~a',t(z)N - B— 1/2 2—0;(1:)1\’
B
so that lji\}r_n*ior‘njf at(z) = ]}\r}l.i?of ay(z); both are equal to | log, 3 |.

Lemma 3.2. Ifa(z) = a <1, then a(z) > a(z).

Proof. (i) There exists Ny so that ay(z) > a — € for all N > Ny, implying

| (N — by (2);2) | < 27 N9
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and a fortiori
| u(N;z) | < 2=N(-9

(since | u(N:2) |= (£H2) ™ | u(V = en(z)i2) D).

(ii) Choose now 0 < t < 2=No_ There exists N > Ny so that 27V-1 <t < 27V,
If t < 2=N(1 - 0"z), then z and z + ¢ have the same first N digits, and because ¢
is bounded, (3.1) leads to

N
lo(z+1)—p(z) | < C 27NV 1 € 27N Y "ok | u(k — L;2) |
k=1

No
<C27Ne=9 4 C 2NN "ok | u(k - 1;2) |
k=1

N
+C 27N Y okgmHe9
k=No+1
<C 2—N(a—5) + C~v 2—N +C 2—N 2N(1-—a+e)+1
<" 2—N(a—e)

where C” depends on z and on ¢, but not on N.
(iit) If t > 27NV (1—oNz), then only the first N — £y (z) — 1 digits of z and z +1¢
are the same. Then

| o(z +1) — () | < C | u(N — bn(z) — ;) | pb @+
N—tn(z)-1
+Cc27V N 2 uk-12)), (3.3)
k=1

where we have used that ¢ is Holder continuous with exponent | log, po |, so that

| (p(a.N—tN(:r)—lz + 2N—l~(z~)—1t) _ (P(UN—lN(::)—lz) I
<C| gN~tn(=)-1, ||1°Sz ﬂols C'uéN(“')‘*'l .

The first term in (3.3) is bounded by C’ 2=Ne~(#); the remainder of the estimate
proceeds as in (ii).

(iv) If t < 0, the discussion is even easier. We choose again |t| < 2~No, and we
identify N so that 2=V=! < |t| < 2=N. We now have again two cases to distinguish:
lt| < Nz or |t| > oNz. In the first case the estimates are exactly the same as in (ii)
above. In the second case dy(z) = 0, and it may be preceded by a stretch of zeros,
dyv(z) = 0= =dn_r41(z), with dy_r(z) = 1. Then only the first N — L — 1
digits of £ and z + ¢ are the same, and

lo(z+t) = p(z) | < C | p(N—L-1;z)| pgtt

N-L-1

+C 27N N 2k uk-12) |,

k=1
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as in (iii). But now | u(N;z) |=| p1 || po |F| p(N = L —1;z) |, so that we still have

N
lp(z+t)—p() | SC' |p(N;2) | + C27V D 2% | u(k - 1;2) |,
k=1

and the estimate of (ii) still works. ]

Next we derive a lower bound on a(z) if e(z) > 1.
Lemma 3.3. Ifa(z) > 1, then p € C(z).

Proof. (i) There exists Ng so that ay(z) > o = 1—4%52 > 1for all N > Ny. It
follows that, for N > N,

| u(N;z) | < | p(N = en(z);z) | <277V .
(ii) Choose |t| < 2=Ne. Find N so that 2-V-1 < jt| < 2=N. By the same
arguments as in the proof of Lemma 3.2 we can then bound the first term in (3.1)

by C 2-N¢, regardless of whether z + ¢ and ¢ have the same first N digits or not.
Consequently

No
lp(z+t)—p(z) | <C2N*+C 27N Y 2 | u(k — 12) |

k=1
N
+C 27N D" okghe
k=Ng+1
<c' 27V <" ).
It follows that ¢ € C(z). O

Together, Lemmas 3.2 and 3.3 imply the following lower bound on a(z),
a(z) > min[l,a(z)] .

In order to prove an upper bound on a(z), we need to address the problem of
cancellations in the right-hand side of (3.1). Note that there is never a problem if z
is a dyadic rational: in that case, 0¥z = 0 for some K, so that if we take t = 2~V
with N > K| then

oz +27N) — p(z) = pH(N — L;z)[p(1) — (0)]

K
+627N Y " df () 2wt (k- 1;2)
k=1
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1t follows that
Po(z +27N) — p(2) |

K
> | pH(K;2) | BV K [ p(1) - p(0) | —p2N 328 | ut(k—1;2) |
k=1

- . ~Ngp2 (2,3)K‘1
2 268%7K |ut(G2) | —27Nep? o

1\¥ 282 N N
N —-K _ - _ 9 K- >C
> [m (5-3) - 522 eo*~| 208
with C > 0, because 8 > 1. Consequently ¢ has Hélder exponent at most | log, 8 |
in any dyadic rational z € [0, 1[, which is exactly a(z).

In other points £ where very long but finite stretches of zeros and ones occur
things are less simple. We shall restrict ourselves below to the set R defined by

R={ze[01) Jim N7Uk(z) =0= Jim N-lz‘,{,(x)} .

We shall see in Sec. 4 that restricting ourselves to only those = that belong to R
does not affect the computation of f(«). For £ € R, we have a(z) = ]gn inf an(z),
—00

with

5}

sn(z)
log,
g

N

in(z)=|log, 8| +

Note that N~!sxy(x) may still fail to tend to a limit for general £ € R. Using the
detailed estimates from Sec. 2, we can now prove

Lemma 3.4. Assume 1 <8< 3. Ifz € R and a(z) < 1, then a(z) = a(z).

Proof. (i) In view of Lemma 3.2, it is sufficient to show that for arbitrarily
small § > 0 we can find a constant C' > 0 and a sequence of t,, with [t,] | 0 so that

l(z +tn) = p(z) | 2 Cltal™*’ (3.4)

where a = a(z) < 1.
(ii) Fix € > 0. Since z € R, there exists Ny so that, for N > Ny,

1 1
F&@), @) <c.
On the other hand, for all N there exists N > N such that
dg(z)<a+e or |p(N,z)|> 9-N(ate)

Define now N' = N — £ (z), N = N' — £3,(z). Then dg(z) =1, dyyy(2) = 0.
Moreover, if we restrict ourselves to N > Ny = (1—¢€)"'Ng,then N > N > N; > N,
and N'=N —fll\-,(z) > N(1 - €) > No, so that £3.,(z) < eN’. It follows that

N>N—eN—eN'>(1-2)N,
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so that

| w(N;2) | > | u(N;2) |
> 2-N(a+e) > 9=~(a+e)(1-2¢)7'N

(iii) We shall choose two possibilities for ¢y and then take the best one.
Define uy = 2-N-2(_1)4~+2(*) where N = N(N) is as in (ii) above. The first
N + 1 binary digits of £ and = + uy are the same, so that

(=142 [p(z + uy) — p()]
= u(N +1,1) [<p (% otz 4 %) - (% aN”z)]

+ﬂ2‘ﬁ‘2]§5d(x)2’° k—1;
k ﬂ( 113)

k=1

_ 1 ] _
= pn(N +1,2) [‘P (yﬁ+1 + 5) - o(yny1) + ﬁz-”-@M

w(N +1;7)
where we have introduced the notations
=L s
M
(M, z) = de(:c)Qkp(k —1;2) . (3.5)
k=1
Similarly, if we define vy = —2'N, then
—[p(z + vv) — o(z)]
_ 1 _NEZ(N - 1,z)
= N -1 - ~) = _ ) N_____)_ ]
u( 1;z) [‘P <yN—1+2) plyn-1) + 8 AN —1;2)

Note that yy_; = %a’ﬁz < %, since the first binary digit of oV z is dyyi(z) =0.
(iv) Define T'(M,z) = ¢ (ym + 3) — o(ym) + ﬁ?‘M_liﬁ;'; . If we can show
that
max [| T(N - 1,2) |, IT(N +1,2)|] =C >0, (3.6)
with C independent of N, then we can choose ty = uy if | T(V + 1) | is largest,
tn = vy otherwise, and it will follow that

| ¢lz+tw) - 9(z) | > ——— C | u(H¥,2) |
|:B"'2 |

> ' 2—N(0+6)(1—2€)-1 > c’ 2—N(a+c)(l+4e)

if e < 1. Since [tx| | 0, this implies (3.4), with § = €(1 + 4a + 4e) arbitrarily small.
(v) It remains therefore to establish (3.6).

First note that (N + L;z) = ﬂ(% - p) w(N — L;z), (N + 1L,z) =
S(N - 1,z) + 2V u(N — 1,z), so that
2—N—2E(N + 1) _ _ 1 2—1\72(1\_/v — 1,13) + 1]
u(N +1) 28(26-1) w(N -1,z)
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On the other hand, we know from Lemma 2.7 that
1 1 2
¢ (yne1+5) = (Umn) 2 5801+ 65 -85
and, since yy_; < %,
1 2 1 2
P -1+ 35 - (yn-1) 226° + 8 Z—ﬂ (48-1f .

Define now p = 9-NE(N-12) Tpep

#(N=Tiz)"
0¥ - 1,2) 2 287+ 6 [ - 5748 - 1) + 6y (3.7a)

and
(N +1,z) > %ﬂ(1+6ﬂ—8ﬂ2)—m-1_—1) (p+1). (3.7b)

The right-hand sides of (3.7a) and (3.7b) are increasing and decreasing linear
functions of p, respectively. Their intersection is given by equating (3.7a) = (3.7b)
which gives

pine = (326° — 56% +286° — 267 — f—2) (86° — 48 +2) ™" ;
substituting this into the right-hand side of (3.7) gives

B(28 —1)(3 - 48)(88% + 28 + 1)

4(482 -28+1) ’ (3.8)
which is > 0 for # € 1, 3[. Consequently
max (T(N — 1,z), T(N + 1,z)) > (3.8) >0,
which proves (3.6) and thereby the whole lemma. O

Lemma 3.4 settled the case if z € R and a(z) < 1. If a(z) > 1, then we have

Lemma 3.5. Suppose a(z) > 1. Then I(z) = Y po, di(z)2Fpu(k ~ 1;2) con-
verges absolutely. If X(z) # 0, then a(z) = 1.

Proof. (i) Again, we only have to find ¢, — 0 and C > 0 so that

lo(z +tn) — 9(z) | > Cltn] .
(ii) Since a(z) > 1, it follows that there exists Ny so that for N > N,

1+ a(x) _

&N(.’E) > aN(a:) > 2

¥>1, or |p(N;z)|<27N.

This already proves the absolute convergence of the series in £(z).
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(iii) Take now ty = (—1)4n+:(£)9=N=1_ Thep
[e(z + tn) — p())(-1)4 4
_ ) I Ny, 1Y (1
= p(N;z) [so (2 oNtiz 4 2) ¢ (2>]
N
+ 27718 " di(2)2 (k- L z),
k=1

so that
| p(z +tn) —p(z) | > B2~N-! |Z(N,z) | —28%27"V |

with X(N, z) as defined by (3.5). Since v > 1, it therefore suffices to prove a lower
bound on | (N, z) |,

| E(N,z)| 2C >0, (3.9)
with C = C(z) independent of N. But | £(N, z) |—| X(z) | > 0, which implies
| S(N,z) | > 1 | £(z) | > 0 for sufficiently large N. O

If = is such that a(z) > 1 and X(z) = 0, then a(z) may be larger than 1. An
example is given by 8 = .5898..., a root of 1 + (48)%(1—28) =0, and by z = %
which has binary expansion .10011001100110011... . One easily checks that

T(4,z) = 1+ (48)*(1~26) =0,

and similarly
Y(4k,z) = L(4(k = 1),z)=--- =0 .

Consequently, for £=0,1, 20r 3
| S(4k + €,2) | < C | u(4k — 1;2) | 2% . (3.10)

In this case a(z) = 3 |log, 8| +3 |log, (B— 1) |~2.12> 1. If z and z + ¢ have
the same first N binary digits (which happens whenever |t] < 27V~2), then (3.10)
leads to

le(z+1) - ¢(z) | < C 279N,
which means that for all |¢| < 1/4,
lp(z +1) —p(z) | < C" Jt|7=) .

This construction can easily be adapted to yield £ with other values for a(z)
between 1 and | log,(8 — 1) |. However, for most € ]0, 1] with a(z) > 1, we have
a(z) = 1. This is shown by the following lemma

Lemma 3.6. For z € ]0,1] with a(z) > 1 and £(z) = 0, we have:

i) ifz> 1 then L(oz)# 0 and a(oz) = a(z) > 1, hence a(oz) = 1;
2
(i) fz< 3, thenZ(z+3)#0, anda(z+3) =a(z) > 1, hence a(z + ) = L.
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Proof. In the first case, £(z) = (28—1) E(oz)+2; in the second case L(z+1) =
2+ (L - 8)7' BZ(2). 1t follows that T(cz) #£ 0 forz > 1, S(z + 1) £0 for z < L.
It is easy to see that the shift o or adding } does not affect a(z). The remainder
then follows from Lemma 3.5. a

This settles our discussion for z € ]0, 1[. By Proposition 3.1, most of this can be
carried over by simple translation to z € ]1,2[ or z € ]2, 3[. There is one exception:
the “anomalous” z € ]1,2[ or € ]2,3[ where a(z) > 1 and a(z) > 1 are now given
by £(z — 1) = } and I(z — 2) = 1, respectively.

The following theorem summarizes all the findings of this section.

Theorem 3.7. Assume % < pB< %, and let p be as defined in Sec. 2. Choose

ye(0,3[y=n+z, withn=0,1 or2, and z € [0, 1] the decimal part of y. Define

sn(z) (=) | p-1/2
N B

a(y) = a(e) = liminf ||log, 8| + log,

] . (3.11)

where
N
sn(z) =) di(x) and £y(z) = min{k €N; dy_x(z) = 0} .
k=1

Then a(y) = lim i(I)lf [log [e(y + t) — p(y)|/ log [t|] satisfies

a(y) > min[l, a(y)] .

Moreover, if z € R = {z € [0,1[; limy—o &4 (2) = 0 = limy_—co £%(2)}, where
£(2) = min{k € N; dy_i(z) = 1}, and if a(y) = a(z) < 1, then a(y) = a(y). If
a(y) = a(z) > 1, then a(y) may be larger than 1, but at least two of the three values
a(z), a(z + 1), a(z + 2) equal 1.

Proof. For z € ]0, 1] this follows from our lemmas. For y = 0, 1 or 2 this follows
from the discussion at the start at the section and a(y) = | log, 8 |. g

4. The Singularity Spectrum f(a) and its Legendre Transform

We shall split our computation of f(a) into two parts: o < 1 and a > 1. In the
latter part we shall concentrate mostly on a = 1, but we shall come back to this
below. For a < 1, we shall prove

Theorem 4.1. Let ¢(z), a(x) be as in Theorem 3.7. Define Sy by
Sa ={z€[0,3]; a(z) = a} . (4.1)
Then, for a < 1, the Hausdorff dimension of S, is given by
dimpSa = p|logy p| + (1 - p) |log,y(1 — p)| (4.2)

where p is determined by |log, 8| + p Ilog2 /’_‘ﬁlﬁl =a.
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The proof will follow from several observations and lemmas. First of all, note
that for a < 1, it follows from Theorem 3.7 that

{z€0,3), z—|[x] €eRanda(z) =a} C S, C{z€]0,3); a(z)<a}, (4.3)

where a(z) is as in (3.11). Let us start by stripping this of all the extraneous factors
|log, 8] and |log,(8 — 1)|. Define b(z) = lim inf N-[sn(z) - €5(z)]. Then (4.3)
—+ 00

can be rewritten as
{z€[0,3), z— |z] eR and b(z) = p} C Sa C {x €[0,3]; b(z) <p}. (44)

In Besicovitch (1934) and Eggleston (1949) the following theorem is proved:
Lemma 4.2. Define R, = {z € [0,1]; limy_oo N tsn(z) = v}. Then

dimg Ry = 7 |logy 7] + (1 — 7) |loga(1 — 7)] -

Note that the existence of a limit for N~!sy(z) necessarily implies that
N-1£% (=) and N~1€},(z) both tend to 0, i.e. that z € R. We therefore have

Corollary 4.3. For a < 1, dimy Sy > h(p), with

h(p) = p |log, pl + (1 — p) |logy(1 —p)|

Proof. It follows from (4.4) that S, D R,. 0

It remains to prove that dimygS, < h(p). Note that because % < B < %,

|logy(8— 3)| > 2, implying that p = [« — |log, 8]1/(|log,(8— §)| — | log, 811 < 1/2.
We now have

Lemma 4.4. If p < 1, then the set W, = {z € [0,1]; b(z) < p} satisfies
dimgW, = h(p).

Proof. (i) It suffices to show for any 5 > h(p) and any é,¢ > 0 that there is a
8-cover U = {U;} of W, with intervals U; such that

Y W' <e. (4.5)

Uie U

(ii) Write 7 = h(p) + A and pick ng large enough so that § > 27"° and also
E;‘;noj e~ 3% < e. Now define X by h(p + X') = n+ $); this is always possible
for small enough A because p < 1/2 and h is strictly increasing on [0, 3]. For each
z € W,, choose the smallest N = N(z) > no such that

1

yEn(E) = (@) < p+ A (4.6)
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such N always exists because b(z) < p. Define  to be the truncation of z after
N binary digits, # = 2z — 2 VeNz = d,...dx00..., and assign to z the dyadic
interval U = [#,% + 27V)] of length 2=V. Let & denote the collection of all such
intervals.

(iii) Next we want to count how many intervals of length 2=V occur in /. We
first map any Z to the number Z obtained by setting the final string of consecutive
1’s in the digit pattern of # to consecutive 0’s, i.e.

£=.dyd,...d;011...1=%=.dyd,...d; 000...0.

By (4.6) any such Z has at most N(p + A’) digits equal to 1. Moreover any Z has
£,(z) < N pre-images # under this map. It follows that for any N, the number of
different Z for which N(z) = N is bounded by

N(p+2')

N 2 (N) < N 2h(p+/\ N ,

where we have used p + A’ < 1/2 together with Lemma 4.7.2 from Ash (1965).
(iv) It follows that

oo
E U < E (N 2h(p+A’)N] 9—Nn

UeU N=n,

oo
<Y NN e O
N=n,

Combining the observations p < 1/2 and (4.4) with Corollary 4.3 and Lemma 4.4,
we see that Theorem 4.1 is proved completely. This gives us an explicit formula for
fle)ifa< 1.

The case @ =1 is handled by

Lemma 4.5. Let p(z), a(z), Sy be defined as above, under the assumption
2 < B < 2 ThendimyS, =1.

_ Proof. (i) Define, for j = 1,2 0r 3, 4; = {z € [j — 1,5]; a(z) > 1}. Then
S = Ua>l o = S1UA1UA2UA;3. From Theoremn 3.7 we have A; +1, A; +2, Ag—1,
As+1, A3 —1, A3+ 1 C S;. Tt follows that dimg 51 > max{dimyg A;; j =1,2,3}.
Consequently dimy S; = dimg S.

(i) On the other hand, [0,3]\S = Ua(lS c {z € [0,3]; a(a:) < 1}

It follows that S contains all the normal points in [0, 3], because a(z) = } | log, B | +
31 log, (B — 3) |> Lif z is normal. Since the normal points constitute a full set, and
full sets necessanly have Hausdorff dimension 1, we have therefore dimyg S = 1.
Hence dimg S; = 1. 0O

The theorems above give us the value of f(a) for all @ < 1. We need not
compute f(a) for a > 1: because f(1) equals 1, the maximum possible value of f,
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the values of f(a) for a > 1 do not affect the Legendre transform of 1 — f for ¢ > 0.
Let us now compute the Legendre transform of 1 — f(a),

S(g)= inf [ga+1-f(a)] .

Then 1—.S(q) can be interpreted as the largest possible intercept with the y-axis
for a line with slope ¢ which has at least one point in common with the graph of
f. Fig. 3 shows the graph of f(a) for @« < 1 and 8 = .74. It clearly shows the
jump at a = 1. For a > 1, f(a) < 1 (although it is probably much smaller than 1;
we suspect f(a) = 0 for a > 1). For large positive ¢, 1 — S(q) will simply be the
intersection with the y-axis of the tangent to f(a) with slope q. As g decreases,
it reaches a critical value ¢. for which the tangent with slope ¢. also goes through
(1,1); this tangent is drawn in dashed lines on Fig. 3. For ¢ < ¢., the straight line
with slope ¢ which has the largest intercept with the y-axis does not even touch
the curved part of the graph: it is simply the straight line y = g ~ 1)+ 1. It
follows that S(q) = ¢ for ¢ < ¢.. It remains to determine ¢, and to compute S(g)
for ¢ > ¢..

1.0 | /f, _____ .
.
0.5 -
qc(a~1)+1// f(a)
/
e
s
/
0 < p
0 0.5 1.0 1.5
a

Fig. 3. The graph of f(«) for o < 1 (fat curve + the point (1,1)) in the case 8 = .74. We have
not plotted f(o) for o > 1. The graph also shows the tangent (to the smooth part of f(o)) that
goes through (1,1).

Lemma 4.6. For ; < 8 < 2 the Legendre transform S(q) of 1 — f(a), for
g >0, is given by
S(e)=4¢ ifg<q.

q
S(g) = 1~ log, [ﬂw (ﬁ— %) ] if0> 0
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where g > 0 is determined by
(28)+(26-1)=2.
Proof. (i) Let us, for this proof only, define the function g(«a) as follows:

tog, (9~ 3) [
g() = p(e) | logy p(a) | +[1 ~ p(a)] | logy[1 ~ p(a)] | (4.7
f ag<a<gar,

g(a) =0 if a<apg=|log,B}| or a>a =

where
@ — g

plo) = o

The restriction of g(a) to [ag, ;] is C*, concave and symmetric around a, =
%(ao + a;), where it attains its maximum value g(a,) = 1; it is strictly increasing
on [ag, &) and strictly decreasing on [, a;]. Because 8(8 — %) < % for % < p< %,
we have o, > 1. Since f(a) = g(a) for 0 < a < 1, and f(1) = 1, the graph of f(a)
therefore looks like Fig. 3 for all 8 between 1 and §, with a jump at o = 1. Define
G(g) to be the Legendre transform of 1 — g PR E

Gl@g)= inf [ga+1-g(a)].

apgLagay

Then, for any ¢, the straight line y = g + 1 — G(q) is tangent to y = g(a), which
means that G(g) is determined by the equations

9'(a)=¢q
G(g) =qa+1-g(a) .

Moreover, if the intercept of the line gor + 1 — G(q) with the o = 1 vertical exceeds
1, ie. if ¢ > G(g), then S(¢q) = G(g). If ¢ < G(q), then S(g) = g (see above). The
critical value g, is therefore determined by ¢, = G(q.)-

(ii) From (4.7) we get

' — 1 o 1—[)(0)
g(a)_al-—ao lg2 p(a)

e[ ()]

o= Poss g [ro (52) ]+ v

Substituting this into G(g) = ga + 1 — g(a) leads to
1 q
6o =1-tog, [+ (5-7) |

(iii) The critical value g, is now determined by G(g.) = q., or #% + (6-1%) e =
219, which can be rewritten as (28)% + (28 — 1)t =2 . O

3

so that ¢'(a) = ¢ leads to

or
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Figure 4 shows a graph of S(q) for # = .74. One finds ¢. =~ 1.151323 in this case.

3 1 T T T

2r S

1 b | -
|
|
|
|

0 ] ' 1 1 J—

0 1 I 2 3 4 5

d. g

Fig. 4. Graph of S(q) in the case § = .74; there are clearly two regimes separated by gc. Asymp-
totically, for g — oo, S(g) ~ 1 + g|log, O|.

5. Computing 7(q)

ST TR log I(t,
In order to compute 7(g) = h|?|1—1-%f —-Foémﬂ, we need to find good upper and

lower bounds for I(t,q) = [ | ¢(z+1t) —@(x) |¢ dz. This is the purpose of the next
few lemmas.

Lemma 5.1. There ezist Cy(q) > 0 and A(g) > 0 so that, for all |t| < 1,

I(t,q) < Ci(9) |loglt] M@ [Je]? + Jefée]

q9
log, [%/3"+%(ﬂ—%> ”

Proof. (i) Since I(t,q) is even in t, we only need to discuss ¢ > 0.

(ii) For any such fixed t < %, we can find n so that 2="~1 <t < 27". Define
now E, = [0,1—2-"]U[1,2— 2""]U[2,3 - 2""], F, = [-2-",0]U [l —2-",1] U
[2-2"",20U[3 —27",3)]. Since supporty = [0,3], we have

where

fq:

It,q) = /E oz +2) - p(2) | do+ /F lp(z+1)—p(z) " dz.  (5.1)
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(iii) The measure of F,, is 4 x 27"; together with the uniformly valid Holder
exponent h = | log, B | this gives the bound

| e+ -pa) 1t ds < 024 (5.2)

(iv) To estimate the integral over E,;, we use again the vector notation introduced
in Sec. 2:
-2-" 3

/En|so(z+t)—w(z)|wz:/° Slue+)-u@l de, 6

where v; denotes the i-th component of the 3-vector v. Since all the norms on R3
are equivalent, and the three vectors e; = (1,1,1), ez = (2 — 23,1 — 24,-20) and
es = (1,0,0) are independent, there exist (¢-dependent) constants Cy,Cz > 0 so
that

& Tl ety -v@)is 63)

< 02/0 Y e e+ 0) — (@) |7 de . (5.4)

i=1

(v) By Proposition 2.1, it follows from (5.3), (5.4) that

[ 1ot -p@ 1 i

1-27"
< c{|t|"<1—2-")+ [l b+ —vanr dz} . (59)
0
The set [0, 1 —27"[can also be characterized as the set of all z € [0, 1] which have at
least one di(z), k = 1,...,n, equal to zero. Consequently [ 0,1—2""[=F_, An,
with An x = {z €[0,1], €4(z) =n—k}. For £ € Anx, « +t and z have the same

first k£ — 1 entries in their binary expansions (because ¢ < 2=*). Formula (2.8),
Proposition 2.1 and | ¢(y + 2) — ¢(y) | < C|z|* then lead to

/0_ les - [o(z +t) — v(z)] | de

= les-[v(z+1t) —v(z)]|? dz
S ARERICDROT

k-1

+0t Y de(z)2'p(e - 1;2)
{=1

<C (Z L +[t) ZJ,.,k) , (5.6)
k=1 k=1

plk — L;z)es - [v(a* 1z + 28~ 11) — v(o* 1))

q
dz
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where

Iy = / | p(k = 1;2) |9 2-(n—k+D)he gy

An,k

Jn,k - /
An,k

(vi) The first k—1 binary digits of £ € A, x are unconstrained, and are therefore
equal to 0 or 1 with probability 1/2 each, all independently of each other. Therefore

1 1 k-1
/ | (k= 1;2) |* dz = (‘2' | o | +§ | #1 |q) / dr
Agk ok=1A,

1 k-1
= < Fao |7 +3 [ 11 |") g-ntE-1

n n 1 1 k-1
— 9—n{l+hq) - ! I q) 9l+h

— 9-n(1+hg) zn: [1 1 | p1 |q]k—1
k=1 l o lq

a\ " | lq
< 9—n(1+hg) (1 + | 1 | ) Ho
- lpol?) |l

- () [+ (o-2) - 1)

(vii) For k = 1, our summation conventions (see Sec. 2) give J, = 0. For
k > 2, a probabilistic argument similar to that in (vi) gives

and

q
dz .

k-1
E dy(2)2! (L - 1;2)

=1

N =

so that

k-1 -1 q
Jn,lc — z 9-k+1 Zdt-zl H Ha, 9—n+k-1
dy,...,dxk_1=0or 1 t=1 j=1
k-1 -1 q
=2"" Z Zd{?t Bl = 27 "Br_1.
dl)"'ydk-l=0 orl |{=1 ]:1
We shall see below that, for some C and A > 0,
Bn<Cm* 2™+ (|28)7+(26-11)"}, (5.8)

implying

Y Iap<Cn 2 (126817 + |26 -111)")

k=1

_<_cn*{1+(-;- |2ﬁ|’+% |2ﬂ—1[‘1) } . (5.9)
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Substituting (5.7) and (5.9) into (5.6) then leads to

| teero-s@rsew o (343 (0-3)) )

"

where we have used n > 1. Together with (5.2) and 2-" < 2t this implies
[ 10tz +0)= (@) 1< C ogy 1 1 {1 + e}

where £ = |log, [187+ 1 (8- 1)?]|. Modulo the proof of (5.8) (see Lemma 5.2
below), this proves the lemma. O

Lemma 5.2. Define, form > 1, B,, = 251,...,.1,,.:0 lZ:":I de2tpu(l - l;d)lq,
where p(k;d) = Hfﬂ pa;, with the convention p(0;d) = 1. Then there ezist C and
A >0 so that

Bn <Cm 2™+ (12817 + |28-1]9)7] . (5.10)

Proof. (i) There exists L so that 2L=! < m < 2L. Our proof shall work by
induction on L. For L = 0 we have only m = 1, and B; = 2111:0 [2d[? = 29. Hence
(5.10) holds with C > B~9.

(ii) Assume that (5.10) holds for all m < 2. Take now m such that 2L < m <
2L+1 Thenm = n;+n,, where ny = ny = m/2if miseven, ny = ny+1 = |m/2]+1
if m is odd. Clearly n,,n, < 2F.

(iii) Using that |a+b]? < ¢, (|a]? + [b|?), withc, = 1if g < 1,¢, =297 if ¢ > 1,
we have
q

> di2tu(t ~1;d)
t=1

n q na q
L [ Zdﬂ‘,‘(( - 1Ld)| + 2™ p(ny; d)|* Zdnl+,2'u(r —1;0™4d) ] .
=1 r=1

This implies
B < ¢g[2" By, + 7™ B,,] , (5.11)

where ¥ = | 2up |9 + | 24 |7= (28)? 4+ (28 — 1)7 > 1 since ¢ > 0 and § > 1/2. By
the induction hypothesis, (5.11) implies
B < cq Cnj [272(2™ 4+ 9™) +4™1(2"%2 + 3]

m+ 1\
<3e,C(—5—) @ +7m). (5.12)

If A is large enough so that (%)A > 3¢y, then 3¢, ("‘T;tnl))‘ < 1 for all m > 2, and
(5.12) implies (5.10). O

Lemma 5.1 gave us an upper bound on I(¢, ¢); the following lemma gives a lower
bound for particular ¢,,.
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Lemma 5.3. Assume that 3 < § < 2. Then there ezist Co(q) > 0 and a
sequence of t,, # 0 with im,,_, ¢, =0 so that

I(tn,q) > Ca(q) [Itn|* + Ital?] .

Proof. (i) We shall choose t, =t} = -2""ort, =t; =27 "2 according to a
procedure to be explained below; we assume n > 1. Then we can copy the argument
in (i1) of the proof of Lemma 5.1, and split the integration domain for I(¢,q) into
E,=[27"1-2""Ju[1+2™",2-2""]U[242"",3—-2""] and F, = [-27",2"]U
l-2""142""Ju2-2"",24+2""]U[3-27",3+ 27 "]. With the obvious minor
changes, the arguments in (iii) and (iv) of the proof of Lemma 5.1 then still hold,
so that

I(tn,Q) 2> C[Il(tm q) + I2(tm Q) - I3(tm Q)] (513)

with

1-2-"
Li(ta, q) = / lea - [v(z + t,) — v(z)]|? dz

-n

Ly(tn,q) = / s (e + tn) — v(@)]lY de

~-n

Is(tn, q) = 9-n(l+gh)

(ii) Since |t,| > 27"~2, it follows that for n > 1,

Li(tn, q) = Ital?(1 — 2-"+1) > -;- 9-na (5.14)

(ii1) We shall bound I3(t,, ¢) below by restricting the integral domain to D, =

{z € {0,1];dn-1(z) = dpn41(z) = dny2(z) = 0,d,(z) = 1}, asubset of [27",1-27"].

For ¢ € D,, let us denote y = % o™*2z; y can take any value in [0, %] Then

oz =14y " Ne+tf) =Ly, o™tz =y, o™ (z+t;) = L +y. Since
z 4t} and z have the same first n — 1 entries, it follows that

—e3 - [v(z +t]) — v(2)] = —p(z +T) + p(2)
= p(n-1;z) [so (-;— + §y> — ¢ (;ll-y)] + BZ(n - 1;z) ,

with (m; ) as defined by (3.5). Similarly z + t; and = have the same first n + 1
entries, so that

ea-lo(e +17) = o(@)) = u(n+ 1:2) o (5 +0) = o) + 5+ 1i2)

One can now copy all the arguments of (v) in the proof of Lemma 3.4 (this is where
we need 8 < 2), leading to

max {Jes - o(z + £3) = v(@)|, |ea-[o(z +£5) —v(@)|} 2 C | u(n - 12) | .
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(iv) With the notation g*(z) = les - [v(z + t¥) — v(2)]|’, it follows that

[ maxls* @0 @n 20 [ Iun= 1)

1 n-2
1
>cpe2mt? 37 [llwar

dy,...,dn_2=0 £=1

gqn
o i (-3

=C' W

Consequently

max (/Dng*'(a:)d:c, /D g'(:c)dz:)

n

25 ) W@ +s @2 g [ madet )0 @)de

> %C’w".

In(t >/ t(z)dz > C” lﬁ*’+l ﬁ—lqn

2( ﬂ)q)_ ny ) I~ 2 2 2
2 c" ltﬂlfq .

(v) Next we show that

1
I3(ta,q) < §Iz(tn,<1)

for n sufficiently large. By (5.15) and 8 = 2~* we have

I(tn,q) > C 9—n(1+gh) [1 4 (ﬂ__ﬂl_/z)q]n '

.. . . log2—logC
This implies (5.186) if n > oa[i4 (E22)

(vi) Putting together (5.14), (5.15) and (5.16) we find from (5.13) that

I(th) >C (Itnlq + |tn |€q) .

The lower and upper bounds on I(t,q) allow us to prove

Theorem 5.4. Assume that % <B< %. Take any ¢ > 0. Then

(@) = i log [ [lp(z+0) - o(a)l ds| 1ogl

q
= min (q, log, [%ﬂq+% (ﬂ— %) ] ) .

Take now t, =t} if [, g*(z)dz > [, g7(z)dz, t, = t; otherwise. Then, since
in either case |t,| > 27""2,

(5.15)

(5.16)
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Proof. (i) Define, for the time being, ((g) = min (g, |log, [18? + 18- %)q] |)
If [t| < £, then Lemma 5.1 implies

I(t,q) < 2C1(q) |loglt| PO @),

hence
log I(t, q) < log[2C1(q)] + A(q) log | log }t| | +¢(g) log J¢] -
Since log |t| < 0, this implies
log I(t, q)
log |t

It follows that lift?_i.%f l°|°; 2> ¢(g).

log | log |t| | . log[2C1(q)]
log |t| log |¢]

> ¢(9) +A(g)

(i1) On the other hand, Lemma 5.3 tells us that there exist ¢, # 0, |t,]| ] 0 so
that

log I(t,, q) > log[Ca(g)] + ((g) logt, ,

hence
log I(tn, q) log[Ca(q)]
log |t,| log[tn]

Together with (i), this proves 7(q) = {(¢). O This then leads to the main result of

<C(g)+

this paper.

Theorem 5.5. Choose B €13,2[, and let ¢ be the continuous L-function with
support[0,3] that solves the equation

o(a) = Bp(a) + (94 3) 2z =)+ (1= B)pl2s — ) + (5 - 8) wl2a - 9
and that is normalized by f; ¢(z)dz = 1. Define, for o and ¢ > 0,
f(a) = dima {2 €0, liigt Dogle(a+1) - p(e)l/loglel] = a
)= timint (1og] [ lo(e +0) ~ plo)l*dz] /ogl)
Then 7(q) is the Legendre transform of 1 — f(a), i.e.
()= inf loa+1- S
Proof. A simple comparison of the results in Sec. 4 and in Theorem 5.4. O
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Note Added in Proof

While this paper was in press we learned of the preprints of S. Jaffard “Multi-
resolution formalism for functions I. Results valid for all functions; II. Self-similar
functions”. It follows from (2.1), (2.12) and (2.13) that our functions are self-
familiar in Jaffard’s sense, so our Theorem 5.5 is included in Jaffard’s results. For

the specific examples here, our analysis provides more detailed information than
Jaffard’s.
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